High-speed rail


High-speed rail is a type of rail transport that runs significantly faster than traditional rail traffic, using an integrated system of specialized rolling stock and dedicated tracks. While there is no single standard that applies worldwide, new lines in excess of and existing lines in excess of are widely considered to be high-speed. The first high-speed rail system, the Tōkaidō Shinkansen, began operations in Japan in 1964 and was widely known as the bullet train. High-speed trains mostly operate on standard gauge tracks of continuously welded rail on grade-separated right-of-way that incorporates a large turning radius in its design, however certain regions with wider legacy railways, such as Russia have sought to develop a high speed railway network in broad gauge.
Several countries have built and developed high-speed rail infrastructure to connect major cities, including Belgium, China, Denmark, France, Germany, Italy, Japan, Morocco, The Netherlands, Russia, Saudi Arabia, South Korea, Spain, Sweden, Taiwan, Turkey, the United Kingdom, the United States and Uzbekistan. Only in Europe does high-speed rail cross international borders. China had built over of high-speed rail as of December 2018, accounting for two-thirds of the world's total.

Definitions

Multiple definitions for high-speed rail are in use worldwide.
The European Union Directive 96/48/EC, Annex 1 defines high-speed rail in terms of:
The International Union of Railways identifies three categories of high-speed rail:
A third definition of high-speed and very high-speed rail requires simultaneous fulfilment of the following two conditions:
The UIC prefers to use "definitions" because they consider that there is no single standard definition of high-speed rail, nor even standard usage of the terms. They make use of the European EC Directive 96/48, stating that high speed is a combination of all the elements which constitute the system: infrastructure, rolling stock and operating conditions.
The International Union of Railways states that high-speed rail is a set of unique features, not merely a train travelling above a particular speed. Many conventionally hauled trains are able to reach in commercial service but are not considered to be high-speed trains. These include the French SNCF Intercités and German DB IC.
The criterion of is selected for several reasons; above this speed, the impacts of geometric defects are intensified, track adhesion is decreased, aerodynamic resistance is greatly increased, pressure fluctuations within tunnels cause passenger discomfort, and it becomes difficult for drivers to identify trackside signalling. Standard signaling equipment is often limited to speeds below 200 km/h with the traditional limits of in the US, in Germany and in Britain. Above those speeds positive train control or the European Train Control System becomes necessary or legally mandatory.
National domestic standards may vary from the international ones.

History

Railways were the first form of rapid land transportation and had an effective monopoly on long-distance passenger traffic until the development of the motor car and airliners in the early-mid 20th century. Speed had always been an important factor for railroads and they constantly tried to achieve higher speeds and decrease journey times. Rail transportation in the late 19th century was not much slower than non-high-speed trains today, and many railroads regularly operated relatively fast express trains which averaged speeds of around.

Early research

First experiments

High-speed rail development began in Germany in 1899 when the Prussian state railway joined with ten electrical and engineering firms and electrified of military owned railway between Marienfelde and Zossen. The line used three-phase current at 10 kilovolts and 45 Hz.
The Van der Zypen & Charlier company of Deutz, Cologne built two railcars, one fitted with electrical equipment from Siemens-Halske, the second with equipment from Allgemeine Elektrizitäts-Gesellschaft, that were tested on the Marienfelde–Zossen line during 1902 and 1903.
On 23 October 1903, the S&H-equipped railcar achieved a speed of and on 27 October the AEG-equipped railcar achieved. These trains demonstrated the feasibility of electric high-speed rail; however, regularly scheduled electric high-speed rail travel was still more than 30 years away.

High-speed aspirations

After the breakthrough of electric railroads, it was clearly the infrastructure – especially the cost of it – which hampered the introduction of high-speed rail. Several disasters happened – derailments, head-on collisions on single-track lines, collisions with road traffic at grade crossings, etc. The physical laws were well-known, i.e. if the speed was doubled, the curve radius should be quadrupled; the same was true for the acceleration and braking distances.
In 1891 the engineer Károly Zipernowsky proposed a high-speed line Vienna–Budapest, bound for electric railcars at. In 1893 Dr. Wellington Adams proposed an air-line from Chicago to St. Louis of. At a speed of only, he was more modest than Zipernowsky – and more realistic, according to General Electric.
Alexander C. Miller had greater ambitions. In 1906, he launched the Chicago-New York Electric Air Line Railroad project to reduce the running time between the two big cities to ten hours by using electric locomotives. After seven years of effort, however, less than of arrow-straight track was finished. A part of the line is still used as one of the last interurbans in the US.

High-speed interurbans

In the US, some of the interurbans of the early 20th century were very high-speed for their time. Several high-speed rail technologies have their origin in the interurban field.
In 1903 – 30 years before the conventional railways started to streamline their trains – the officials of the Louisiana Purchase Exposition organized the Electric Railway Test Commission to conduct a series of tests to develop a carbody design that would reduce wind resistance at high speeds. A long series of tests was carried. In 1905, St. Louis Car Company built a railcar for the traction magnate Henry E. Huntington, capable of speeds approaching. Once it ran between Los Angeles and Long Beach in 15 minutes, an average speed of. However, it was too heavy for much of the tracks, so Cincinnati Car Company, J. G. Brill and others pioneered lightweight constructions, use of aluminium alloys, and low-level bogies which could operate smoothly at extremely high speeds on rough interurban tracks. Westinghouse and General Electric designed motors compact enough to be mounted on the bogies. From 1930 on, the Red Devils from Cincinnati Car Company and a some other interurban railcars reached about in commercial traffic. The Red Devils weighed only 22 tons though they could seat 44 passengers.
Extensive wind tunnel research – the first in the railway industry – was done before J. G. Brill in 1931 built the Bullet cars for Philadelphia and Western Railroad. They were capable of running at. Some of them were almost 60 years in service. P&W's Norristown High Speed Line is still in use, almost 110 years after P&W in 1907 opened their double-track Upper Darby–Strafford line without a single grade crossing with roads or other railways. The entire line was governed by an absolute block signal system.

Early German high-speed network

On 15 May 1933, the Deutsche Reichsbahn-Gesellschaft company introduced the diesel-powered "Fliegender Hamburger" in regular service between Hamburg and Berlin, thereby achieving a new top speed for a regular service, with a top speed of. This train was a streamlined multi-powered unit, albeit diesel, and used Jakobs bogies.
Following the success of the Hamburg line, the steam-powered Henschel-Wegmann Train was developed and introduced in June 1936 for service from Berlin to Dresden, with a regular top speed of. Incidentally no train service since the cancelation of this express train in 1939 has traveled between the two cities in a faster time as of 2018. In August 2019, the travel time between Dresden-Neustadt and Berlin-Südkreuz was 102 minutes. See Berlin–Dresden railway.
Further development allowed the usage of these "Fliegenden Züge" on a rail network across Germany.
The "Diesel-Schnelltriebwagen-Netz" had been in the planning since 1934 but it never reached its envisaged size.
All high-speed service stopped in August 1939 shortly before the outbreak of World War II.

American Streamliners

On 26 May 1934, one year after Fliegender Hamburger introduction, the Burlington Railroad set an average speed record on long distance with their new streamlined train, the Zephyr, at with peaks at. The Zephyr was made of stainless steel and, like the Fliegender Hamburger, was diesel powered, articulated with Jacobs bogies, and could reach as commercial speed.
The new service was inaugurated 11 November 1934, traveling between Kansas City and Lincoln, but at a lower speed than the record, on average speed.
In 1935, the Milwaukee Road introduced the Morning Hiawatha service, hauled at by steam locomotives.
In 1939, the largest railroad of the world, the Pennsylvania Railroad introduced a duplex steam engine Class S1, which was designed to be capable of hauling 1200 tons passenger trains at. The S1 engine was assigned to power the popular all-coach overnight premier train the Trail Blazer between New York and Chicago since the late 1940s and it consistently reached in its service life. These were the last "high-speed" trains to use steam power. In 1936, the Twin Cities Zephyr entered service, from Chicago to Minneapolis, with an average speed of.
Many of these streamliners posted travel times comparable to or even better than their modern Amtrak successors, which are limited to top speed on most of the network.

Italian electric and the last steam record

The German high-speed service was followed in Italy in 1938 with an electric-multiple-unit ETR 200, designed for, between Bologna and Naples. It too reached in commercial service, and achieved a world mean speed record of near Milan in 1938.
In Great Britain in the same year, the streamlined steam locomotive Mallard achieved the official world speed record for steam locomotives at. The external combustion engines and boilers on steam locomotives were large, heavy and time and labor-intensive to maintain, and the days of steam for high speed were numbered.

Introduction of the Talgo system

In 1945, a Spanish engineer, Alejandro Goicoechea, developed a streamlined articulated train able to run on existing tracks at higher speeds than contemporary passenger trains. This was achieved by providing the locomotive and cars with a unique axle system that used one axle set per car end, connected by a Y-bar coupler. Amongst other advantages, the centre of mass was only half as high as usual. This system became famous under the name of Talgo, and for half a century was the main Spanish provider of high-speed trains.

First above 300 km/h developments

In the early 1950s, the French National Railway started to receive their new powerful CC 7100 electric locomotives, and began to study and evaluate running at higher speeds. In 1954, the CC 7121 hauling a full train achieved a record during a test on standard track. The next year, two specially tuned electric locomotives, the CC 7107 and the prototype BB 9004, broke previous speed records, reaching respectively and, again on standard track. For the first time, was surpassed, allowing the idea of higher speed services to be developed and further engineering studies commenced. Especially, during the 1955 records, a dangerous hunting oscillation, the swaying of the bogies which leads to dynamic instability and potential derailment was discovered. This problem was solved by yaw dampers which enabled safe running at high speeds today. Research was also made about "current harnessing" at high-speed by the pantographs, that was solved 20 years later by the Zébulon TGV's prototype.

Breakthrough: Shinkansen

Japanese research and development

With some 45 million people living in the densely populated Tokyo–Osaka corridor, congestion on road and rail became a serious problem after World War II, and the Japanese government began thinking seriously about a new high-speed rail service.
Japan in the 1950s was a populous, resource-limited nation that for security reasons did not want to import petroleum, but needed a way to transport its millions of people in and between cities.
Japanese National Railways engineers then began to study the development of a high-speed regular mass transit service. In 1955, they were present at the Lille's Electrotechnology Congress in France, and during a 6-month visit, the head engineer of JNR accompanied the deputy director Marcel Tessier at the DETE. JNR engineers returned to Japan with a number of ideas and technologies they would use on their future trains, including alternating current for rail traction, and international standard gauge.

First narrow-gauge Japanese high-speed service

In 1957, the engineers at the private Odakyu Electric Railway in Greater Tokyo Area launched the Odakyu 3000 series SE EMU. This EMU set a world record for narrow gauge trains at, giving the Odakyu engineers confidence they could safely and reliably build even faster trains at standard gauge. The original Japanese railways generally used narrow gauge, but the increased stability offered by widening the rails to standard gauge would make very high-speed rail much simpler, and thus standard gauge was adopted for high-speed service. With the sole exceptions of Russia, Finland, and Uzbekistan all high speed rail lines in the world are still standard gauge, even in countries where the preferred gauge for legacy lines is different.

A new train on a new line

The new service, named Shinkansen would provide a new alignment, 25% wider standard gauge, continuously welded rails between Tokyo and Osaka using new rolling stock, designed for. However, the World Bank, whilst supporting the project, considered the design of the equipment as unproven for that speed, and set the maximum speed to.
After initial feasibility tests, the plan was fast-tracked and construction of the first section of the line started on 20 April 1959. In 1963, on the new track, test runs hit a top speed of. Five years after the beginning of the construction work, in October 1964, just in time for the Olympic Games, the first modern high-speed rail, the Tōkaidō Shinkansen, was opened between the two cities.
The first Shinkansen trains, the 0 Series Shinkansen, built by Kawasaki Heavy Industries—in English often called "Bullet Trains", after the original Japanese name —outclassed the earlier fast trains in commercial service. They traversed the distance in 3 hours 10 minutes, reaching a top speed of and sustaining an average speed of with stops at Nagoya and Kyoto.

High-speed rail for the masses

Speed was only a part of the Shinkansen revolution: the Shinkansen offered high-speed rail travel to the masses. The first Bullet trains had 12 cars and later versions had up to 16, and double-deck trains further increased the capacity.
After three years, more than 100 million passengers had used the trains, and the milestone of the first one billion passengers was reached in 1976. In 1972, the line was extended a further, and further construction has resulted in the network expanding to as of March 2020, with a further of extensions currently under construction and due to open in stages between March 2023 and 2031. The cumulative patronage on the entire system since 1964 is over 10 billion, the equivalent of approximately 140% of the world's population, without a single train passenger fatality..
Since their introduction, Japan's Shinkansen systems have been undergoing constant improvement, not only increasing line speeds. Over a dozen train models have been produced, addressing diverse issues such as tunnel boom noise, vibration, aerodynamic drag, lines with lower patronage, earthquake and typhoon safety, braking distance, problems due to snow, and energy consumption.

Future developments

After decades of research and successful testing on a 43-km test track, JR Central is now constructing a Maglev Shinkansen line, which is known as the Chūō Shinkansen. These Maglev trains still have the traditional underlying tracks and the cars have wheels. This serves a practical purpose at stations and a safety purpose out on the lines in the event of a power failure. However, in normal operation the wheels are raised up into the car as the train reaches certain speeds where the magnetic levitation effect takes over.
It will link Tokyo and Osaka by 2037, with the section from Tokyo to Nagoya expected to be operational by 2027. Average speed is anticipated at 505 km/h. The first generation train can be ridden by tourists visiting the test track.

Europe and North America

First demonstrations at 200 km/h

In Europe, high-speed rail began during the International Transport Fair in Munich in June 1965, when Dr Öpfering, the director of Deutsche Bundesbahn, performed 347 demonstrations at between Munich and Augsburg by DB Class 103 hauled trains. The same year the Aérotrain, a French hovercraft monorail train prototype, reached within days of operation.

''Le Capitole''

After the successful introduction of the Japanese Shinkansen in 1964, at, the German demonstrations up to in 1965, and the proof-of-concept jet-powered Aérotrain, SNCF ran its fastest trains at.
In 1966, French Infrastructure Minister Edgard Pisani consulted engineers and gave the French National Railways twelve months to raise speeds to. The classic line Paris–Toulouse was chosen, and fitted, to support rather than. Some improvements were set, notably the signals system, development of on board "in-cab" signalling system, and curve revision.
The next year, in May 1967, a regular service at was inaugurated by the TEE Le Capitole between Paris and Toulouse, with specially adapted SNCF Class BB 9200 locomotives hauling classic UIC cars, and a full red livery.
At the same time, the Aérotrain prototype 02 reached on a half-scale experimental track. In 1969, it achieved on the same track. On 5 March 1974, the full-scale commercial prototype Aérotrain I80HV, jet powered, reached.

US Metroliner trains

In the United States, following the creation of Japan's first high-speed Shinkansen, President Lyndon B. Johnson as part of his Great Society infrastructure building initiatives asked the Congress to devise a way to increase speeds on the railroads. The congress delivered the High Speed Ground Transportation Act of 1965 which passed with overwhelming bipartisan support and helped to create regular Metroliner service between New York City, Philadelphia, and Washington, D.C.. The new service was inaugurated in 1969, with top speeds of and averaging along the route, with the travel time as little as 2 hours 30 minutes. In a 1967 competition with a GE powered Metroliner on Penn Central's mainline, the United Aircraft Corporation TurboTrain set a record of.

United Kingdom, Italy and Germany

In 1976, British Rail introduced a high-speed service able to reach using the InterCity 125 diesel-electric train sets under the brand name of High Speed Train. It was the fastest diesel-powered train in regular service and it improved upon its forerunners in speed and acceleration. As of 2019 it is still the fastest diesel powered train regular service. The train was as a reversible multi-car set having driving power-cars at both ends and a fixed formation of passenger cars between them. Journey times were reduced by an hour for example on the East Coast Main Line, and passenger numbers increased.. As of 2019 many of these trains are still in service, private operators have often preferred to rebuild the units with new engines rather than replace them.
The next year, in 1977, Germany finally introduced a new service at, on the Munich–Augsburg line. That same year, Italy inaugurated the first European High-Speed line, the Direttissima between Roma and Florence, designed for, but used by FS E444 hauled train at. This year also saw the abandonment for political reasons of the Aérotrain project, in favour of the TGV.

Evolution in Europe

France

Following the 1955 records, two divisions of the SNCF began to study high-speed services. In 1964, the DETMT investigated the use of gas turbines: a diesel-powered railcar was modified with a gas-turbine, and was called "TGV". It reached in 1967, and served as a basis for the future Turbotrain and the real TGV. At the same time, the new "SNCF Research Department", created in 1966, was studying various projects, including one code-named "C03: Railways possibilities on new infrastructure ".
In 1969, the "C03 project" was transferred to public administration while a contract with Alstom was signed for the construction of two gas-turbine high-speed train prototypes, named "TGV 001". The prototype consisted of a set of five carriages, plus a power car at each end, both powered by two gas-turbine engines. The sets used Jacobs bogies, which reduce drag and increase safety.
In 1970, the DETMT's Turbotrain began operations on the Paris–Cherbourg line, and operated at despite being designed for usage at. It used gas-turbine powered multiple elements and was the basis for future experimentation with TGV services, including shuttle services and regular high rate schedules.
In 1971, the "C03" project, now known as "TGV Sud-Est", was validated by the government, against Bertin's Aerotrain. Until this date, there was a rivalry between the French Land Settlement Commission, supporting the Aérotrain, and the SNCF and its ministry, supporting conventional rail. The "C03 project" included a new High-Speed line between Paris and Lyon, with new multi-engined trains running at. At that time, the classic Paris-Lyon line was already congested and a new line was required; this busy corridor, neither too short nor too long, was the best choice for the new service.
The 1973 oil crisis substantially increased oil prices. In the continuity of the De Gaulle "energy self-sufficiency" and nuclear-energy policy, a ministry decision switched the future TGV from now costly gas-turbine to full electric energy in 1974. An electric railcar named Zébulon was developed for testing at very high speeds, reaching a speed of. It was used to develop pantographs capable of withstanding speeds of over.
, in 1982
After intensive tests with the gas-turbine "TGV 001" prototype, and the electric "Zébulon", in 1977, the SNCF placed an order to the group Alstom–Francorail–MTE for 87 TGV Sud-Est trainsets.
They used the "TGV 001" concept, with a permanently coupled set of eight cars, sharing Jacobs bogies, and hauled by two electric power-cars, one at each end.
In 1981, the first section of the new Paris–Lyon High-Speed line was inaugurated, with a top speed. Being able to use both dedicated high-speed and conventional lines, the TGV offered the ability to join every city in the country at shorter journey times. After the introduction of the TGV on some routes, air traffic on these routes decreased and in some cases disappeared. The TGV set a publicised speed records in 1981 at, in 1990 at, and then in 2007 at, although these were test speeds, rather than operation train speeds.

Germany

Following the French TGV, in 1991 Germany was the second country in Europe to inaugurate a high-speed rail service, with the launch of the Intercity-Express on the new Hannover–Würzburg high-speed railway, operating at a top speed of. The German ICE train was similar to the TGV, with dedicated streamlined power cars at both ends, but a variable number of trailers between them. Unlike the TGV, the trailers had two conventional bogies per car, and could be uncoupled, allowing the train to be lengthened or shortened. This introduction was the result of ten years of study with the ICE-V prototype, originally called Intercity Experimental, which broke the world speed record in 1988, reaching.

Spain

In 1992, just in time for the Barcelona Olympic Games and Seville Expo '92, the Madrid–Seville high-speed rail line opened in Spain with 25 kV AC electrification, and standard gauge, differing from all other Spanish lines which used Iberian gauge. This allowed the AVE rail service to begin operations using Class 100 train sets built by Alstom, directly derived in design from the French TGV trains. The service was very popular and development continued on high-speed rail in Spain.
In 2005, the Spanish Government announced an ambitious plan, envisioning that by 2020, 90 percent of the population would live within of a station served by AVE. Spain began building the largest HSR network in Europe: as of 2011, five of the new lines have opened and another were under construction. Opened in early 2013, the Perpignan–Barcelona high-speed rail line provides a link with neighbouring France with trains running to Paris, Lyon, Montpellier and Marseille.

Evolution in North America

In 1992, the United States Congress authorized the Amtrak Authorization and Development Act to focus on Amtrak's service improvement on the segment between Boston and New York City of the Northeast Corridor. The primary objectives were to electrify the line north of New Haven, Connecticut and replace the then 30-year-old Metroliners with new trains to achieve shorter travel time.
Amtrak started testing two trains, the Swedish X2000 and the German ICE 1, in the same year along its fully electrified segment between New York City and Washington DC. The officials favored the X2000 as it had a tilting mechanism. However, the Swedish manufacturer never bid on the contract as the burdensome United States railroad regulations required them to heavily modify the train resulting in added weight, among other things. Eventually, a custom-made tilting train derived from TGV, manufactured by Alstom and Bombardier, won the contract and was put into service in December 2000.
The new service was named "Acela Express" and linked Boston, New York City, Philadelphia, Baltimore, and Washington DC. The service did not meet the 3-hour travel time objective, between Boston and New York City. The time was 3 hours and 24 minutes as it partially ran on regular lines, limiting its average speed, with a maximum speed of being reached on a small section of its route through Rhode Island and Massachusetts.
The U.S. currently has one high speed rail line under construction in California, and advanced planning by a company called Texas Central Railway in Texas, higher-speed rail projects in the Pacific Northwest, Midwest and Southeast, as well as upgrades on the high-speed Northeast Corridor. The private higher speed rail venture Brightline in Florida started operations along part of its route in early 2018. Speeds are this far limited to but extensions will be built for a top speed of.

Expansion in East Asia

For four decades from its opening in 1964, the Japanese Shinkansen was the only high-speed rail service outside of Europe. In the 2000s a number of new high-speed rail services started operating in East Asia.

Chinese CRH

High-speed rail was introduced to China in 2003 with the Qinhuangdao–Shenyang high-speed railway.
The Chinese government made high-speed rail construction a cornerstone of its economic stimulus program in order to combat the effects of the 2008 global financial crisis and the result has been a rapid development of the Chinese rail system into the world's most extensive high-speed rail network. By 2013 the system had of operational track, accounting for about half of the world's total at the time.
By the end of 2018, the total high-speed railway in China had risen to over.
Over 1,713 billion trips were made in 2017, more than half of the China's total railway passenger delivery, making it the world's busiest network.
State planning for high-speed railway began in the early 1990s, and the country's first high-speed rail line, the Qinhuangdao–Shenyang Passenger Railway, was built in 1999 and opened to commercial operation in 2003. This line could accommodate commercial trains running at up to. Planners also considered Germany's Transrapid maglev technology and built the Shanghai maglev train, which runs on a track linking the Pudong, the city's financial district, and the Pudong International Airport.
The maglev train service began operating in 2004 with trains reaching a top speed of, and remains the fastest high-speed service in the world. Maglev, however, was not adopted nationally and all subsequent expansion features high-speed rail on conventional tracks.
In the 1990s, China's domestic train production industry designed and produced a series of high-speed train prototypes but few were used in commercial operation and none were mass-produced. The Chinese Ministry of Railways then arranged for the purchase of foreign high-speed trains from French, German, and Japanese manufacturers along with certain technology transfers and joint ventures with domestic trainmakers. In 2007, the MOR introduced the China Railways High-speed service, also known as "Harmony Trains", a version of the German Siemens Velaro high-speed train.
In 2008, high-speed trains began running at a top speed of on the Beijing–Tianjin intercity railway, which opened during the 2008 Summer Olympics in Beijing.
The following year, trains on the newly opened Wuhan–Guangzhou high-speed railway set a world record for average speed over an entire trip, at over.
A collision of high-speed trains on 23 July 2011 in Zhejiang province killed 40 and injured 195, raising concerns about operational safety. A credit crunch later that year slowed the construction of new lines. In July 2011, top train speeds were lowered to. But by 2012, the high-speed rail boom had renewed with new lines and new rolling stock by domestic producers that had indigenized foreign technology. On 26 December 2012, China opened the Beijing–Guangzhou–Shenzhen–Hong Kong high-speed railway, the world's longest high-speed rail line, which runs from Beijing West railway station to Shenzhen North Railway Station.
The network set a target to create the 4+4 National High Speed Rail Grid by 2015, and continues to rapidly expand with the July 2016 announcement of the 8+8 National High Speed Rail Grid. In 2017, 350 km/h services resumed on the Beijing–Shanghai high-speed railway, once again refreshing the world record for average speed with select services running between Beijing South to Nanjing South reaching average speeds of.

South Korean KTX

In South Korea, Korea Train Express services were launched on 1 April 2004, using French technology, on the Seoul–Busan corridor, Korea's busiest traffic corridor, between the two largest cities. In 1982, it represented 65.8% of South Korea's population, a number that grew to 73.3% by 1995, along with 70% of freight traffic and 66% of passenger traffic. With both the Gyeongbu Expressway and Korail's Gyeongbu Line congested as of the late 1970s, the government saw the pressing need for another form of transportation.
Construction began on the high-speed line from Seoul to Busan in 1992 with the first commercial service launching in 2004. Top speed for trains in regular service is currently, though the infrastructure is designed for. The initial rolling stock was based on Alstom's TGV Réseau, and was partly built in Korea. The domestically developed HSR-350x, which achieved in tests, resulted in a second type of high-speed trains now operated by Korail, the KTX Sancheon. The next generation KTX train, HEMU-430X, achieved in 2013, making South Korea the world's fourth country after France, Japan, and China to develop a high-speed train running on conventional rail above.

Taiwan HSR

's first and only HSR line opened for service on 5 January 2007, using Japanese trains with a top speed of. The service traverses from to in as little as 105 minutes. Once THSR began operations, almost all passengers switched from airlines flying parallel routes while road traffic was also reduced.

Middle East and Central Asia

Turkey

In 2009, Turkey inaugurated a high-speed service between Ankara and Eskișehir. This has been followed up by an Ankara – Konya route, and the Eskișehir line has been extended to Istanbul.

Uzbekistan

Uzbekistan opened the Afrosiyob service from Tashkent to Samarkand in 2011, which was upgraded in 2013 to an average operational speed of and peak speed of. The Talgo 250 service has been extended to Karshi as of August 2015 whereby the train travels in 3 hours. As of August 2016, the train service was extended to Bukhara, and the extension will take 3 hours and 20 minutes down from 7 hours.

Network

Maps

Technologies

is generally used to reduce track vibrations and misalignment. Almost all high-speed lines are electrically driven via overhead cables, have in-cab signalling, and use advanced switches using very low entry and frog angles.

Road-rail parallel layout

Road Rail Parallel Layout uses land beside highways for railway lines. Examples include Paris/Lyon and Köln–Frankfurt in which 15% and 70% of the track runs beside highways, respectively.

Track sharing

In China, high-speed lines at speeds between may carry freight or passengers. While lines operating at speeds over are used only by passenger CRH trains.
In the United Kingdom, HS1 is also used by regional trains run by Southeastern at speeds of up to 225 km/h, and occasionally freight trains that run to central Europe.
In Germany, some lines are shared with Inter-City and regional trains at day and freight trains at night.
In France, some lines are shared with regional trains that travel at 200 km/h, for example TER Nantes-Laval.

Cost

The cost per kilometre in Spain was estimated at between €9 million and €22 million.
In Italy, the cost was between €24 million and €68 million.
In the 2010s, costs per kilometre in France ranged from €18 million to €26 million. The World Bank estimated in 2019 that the Chinese HSR network was built at an average cost of $17-$21 million per km, a third less of the cost in other countries.

Freight high-speed rail

All high-speed trains have been designed to carry passengers only. There are very few high-speed freight services in the world; they all use trains which were originally designed to carry passengers.
During the planning of the Tokaido Shinkansen, the Japanese National Railways were planning for freight services along the route. This plan was later discarded.
The French TGV La Poste was for a long time the sole very high-speed train service, transporting mail in France for La Poste at a maximum top speed of 270 km/h, between 1984 and 2015. The trainsets were either specifically adapted and built, either converted, passenger TGV Sud-Est trainsets.
In Italy, Mercitalia Fast is a high-speed freight service launched in October 2018 by Mercitalia. It uses converted passenger ETR 500 trainsets to carry goods at average speeds of 180 km/h, at first between Caserta and Bologna, with plans to extend the network throughout Italy.
China Railways has introduced high speed rail parcel service along with SF Express: SF Express collects and distributes the parcels between local railway stations and customer premises using their local distribution network, while China Railways provides the long haul transport service on CRH services. Instead of using dedicated train sets, China Railways high speed parcels are shipped using unused luggage rack space or reserved carriages on regular passenger services.

Rolling stock

Key technologies include tilting trainsets, aerodynamic designs, air brakes, regenerative braking, engine technology and dynamic weight shifting.

Comparison with other modes of transport

Optimal distance

While commercial high-speed trains have lower maximum speeds than jet aircraft, they offer shorter total trip times than air travel for short distances. They typically connect city centre rail stations to each other, while air transport connects airports that are typically farther from city centres.
High-speed rail is best suited for journeys of 1 to 4½ hours, for which the train can beat air and car trip time. For trips under about, the process of checking in and going through airport security, as well as traveling to and from the airport, makes the total air journey time equal to or slower than HSR. European authorities treat HSR as competitive with passenger air for HSR trips under 4½ hours.
HSR eliminated most air transport from between Paris–Lyon, Paris–Brussels, Cologne–Frankfurt, Madrid–Barcelona, Naples–Rome–Milan, Nanjing–Wuhan, Chongqing–Chengdu, Tokyo–Nagoya, Tokyo–Sendai and Tokyo–Niigata.
China Southern Airlines, China's largest airline, expects the construction of China's high-speed railway network to impact 25% of its route network in the coming years.

Market shares

European data indicate that air traffic is more sensitive than road traffic to competition from HSR, at least on journeys of and more. TGV Sud-Est reduced the travel time Paris–Lyon from almost four to about two hours. Market share rose from 40 to 72%. Air and road market shares shrunk from 31 to 7% and from 29 to 21%, respectively. On the Madrid–Sevilla link, the AVE connection increased share from 16 to 52%; air traffic shrunk from 40 to 13%; road traffic from 44 to 36%, hence the rail market amounted to 80% of combined rail and air traffic. This figure increased to 89% in 2009, according to Spanish rail operator RENFE.
According to Peter Jorritsma, the rail market share s, as compared to planes, can be computed approximately as a function of the travelling time in minutes t by the formula
According to this formula, a journey time of three hours yields 65% market share, not taking into account the price of a ticket.
In another study conducted about Japan's High-speed rail service, they found a "4-hour wall" in high-speed rail's market share, which if the high speed rail journey time exceeded 4 hours, then people would likely choose planes over high-speed rail. For instance, from Tokyo to Osaka, a 2h22m-journey by Shinkansen, high-speed rail has an 85% market share whereas planes have 15%. From Tokyo to Hiroshima, a 3h44m-journey by Shinkansen, high-speed rail has a 67% market share whereas planes have 33%. The situation is the reverse on the Tokyo to Fukuoka route where high-speed rail takes 4h47m and rail only has 10% market share and planes 90%.
In Taiwan, China Airlines cancelled all flights to Taichung Airport within a year of Taiwan High Speed Rail starting operations. The construction of the railway has led to drastically fewer flights along the island's west coast, with flights between Taipei and Kaohsiung ceasing altogether in 2012.

Energy efficiency

Travel by rail is more competitive in areas of higher population density or where gasoline is expensive, because conventional trains are more fuel-efficient than cars when ridership is high, similar to other forms of mass transit. Very few high-speed trains consume diesel or other fossil fuels but the power stations that provide electric trains with electricity can consume fossil fuels. In Japan and France, with very extensive high-speed rail networks, a large proportion of electricity comes from nuclear power. On the Eurostar, which primarily runs off the French grid, emissions from travelling by train from London to Paris are 90% lower than by flying. In Germany 38.5% of all electricity was produced from renewable sources in 2017, however railways run on their own grid partially independent from the general grid and relying in part on dedicated power plants. Even using electricity generated from coal or oil, high-speed trains are significantly more fuel-efficient per passenger per kilometre traveled than the typical automobile because of economies of scale in generator technology and trains themselves, as well as lower air friction and rolling resistance at the same speed.

Automobiles and buses

High-speed rail can accommodate more passengers at far higher speeds than automobiles. Generally, the longer the journey, the better the time advantage of rail over road if going to the same destination. However, high-speed rail can be competitive with cars on shorter distances,, for example for commuting, especially if the car users do experience road congestion or expensive parking fees. In Norway, the Gardermoen Line has made the rail market share for passengers from Oslo to the airport rise to 51% in 2014, compared to 17% for buses and 28% for private cars and taxis. On such short lines−particularly services which call at stations close to one another−the acceleration capabilities of the trains may be more important than their maximum speed.
Moreover, typical passenger rail carries 2.83 times as many passengers per hour per metre width as a road. A typical capacity is the Eurostar, which provides capacity for 12 trains per hour and 800 passengers per train, totaling 9,600 passengers per hour in each direction. By contrast, the Highway Capacity Manual gives a maximum capacity of 2,250 passenger cars per hour per lane, excluding other vehicles, assuming an average vehicle occupancy of 1.57 people. A standard twin track railway has a typical capacity 13% greater than a 6-lane highway, while requiring only 40% of the land. The Tokaido Shinkansen line in Japan, has a much higher ratio. Similarly commuter roads tend to carry fewer than 1.57 persons per vehicle during commute times.

Air travel

HSR Advantages

High speed rail usually implements electric power and therefore its energy sources can be distant or renewable. This is an advantage over air travel, which currently uses fossil fuels and is a major source of pollution. Studies regarding busy airports such as LAX, have shown that over an area of about downwind of the airport, where hundreds of thousands of people live or work, the particle number concentration was at least twice that of nearby urban areas, showing that airplane pollution far exceeded road pollution, even from heavy freeway traffic.

Trees

Airplanes and airstrips require trees to be cut down, as they are a nuisance to pilots. Some 3,000 trees will be chopped due to obstruction issues at Seattle–Tacoma International Airport. On the other hand, trees next to rail lines can often become a hazard during winter storms, with several German media calling for trees to be cut down following autumn storms in 2017.

Safety

HSR is much simpler to control due to its predictable course. High-speed rail systems reduce collisions with automobiles or people, by using non-grade level track and eliminating grade-level crossings. To date the only two deadly accidents involving a high speed train on high speed tracks in revenue service were the 1998 Eschede train disaster and the 2011 Wenzhou train collision.

Accidents

In general, travel by high-speed rail has been demonstrated to be remarkably safe. The first high-speed rail network, the Japanese Shinkansen has not had any fatal accidents involving passengers since it began operating in 1964.
Notable major accidents involving high-speed trains include the following.

1998 Eschede accident

In 1998, after over thirty years of high-speed rail operations worldwide without fatal accidents, the Eschede accident occurred in Germany: a poorly designed ICE 1 wheel fractured at a speed of near Eschede, resulting in the derailment and destruction of almost the entire set of 16 cars, and the death of 101 people. The derailment began at a switch; the accident was made worse when the derailed cars traveling at high speed struck and collapsed a road bridge located just past the switch.

2011 Wenzhou accident

On 23 July 2011, 13 years after the Eschede train accident, a Chinese CRH2 traveling at collided with a CRH1 which was stopped on a viaduct in the suburbs of Wenzhou, Zhejiang province, China. The two trains derailed, and four cars fell off the viaduct. Forty people were killed and at least 192 were injured, 12 of them severely.
The disaster led to a number of changes in management and exploitation of high-speed rail in China. Despite the fact that speed itself was not a factor in the cause of the accident, one of the major changes was to further lower the maximum speeds in high-speed and higher-speed railways in China, the remaining becoming 300, becoming 200, and becoming 160. Six years later they started to be restored to their original high speeds.

2013 Santiago de Compostela accident

In July 2013, a high-speed train in Spain traveling at attempted to negotiate a curve whose speed limit is. The train derailed and overturned, resulting in 78 fatalities. Normally high-speed rail has automatic speed limiting restrictions, but this track section is a conventional section and in this case the automatic speed limit was said to be disabled by the driver several kilometers before the station. A few days later, the train worker's union claimed that the speed limiter didn't work properly because of lack of proper funding, acknowledging the budget cuts made by the current government. Two days after the accident, the driver was provisionally charged with homicide by negligence. This is the first accident that occurred with a Spanish high-speed train, but it occurred in a section that was not high speed and as mentioned safety equipment mandatory on high speed track would have prevented the accident.

2015 Eckwersheim accident

On 14 November 2015, a specialized TGV EuroDuplex was performing commissioning tests on the unopened second phase of the LGV Est high-speed line, when it entered a curve, overturned, and struck the parapet of a bridge over the Marne–Rhine Canal. The rear power car came to a rest in the canal, while the remainder of the train came to a rest in the grassy median between the northern and southern tracks. Approximately 50 people were on board, consisting of SNCF technicians and, reportedly, some unauthorized guests. Eleven were killed and 37 were injured. The train was performing tests at 10 percent above the planned speed limit for the line and should have slowed from to before entering the curve. Officials have indicated that excessive speed may have caused the accident. During testing some safety features that usually prevent accidents like this one are switched off.

2018 Ankara train collision

On 13 December 2018, a high-speed passenger train and a locomotive collided near Yenimahalle in Ankara Province, Turkey. Three cars of the passenger train derailed in the collision. Three railroad engineers and five passengers were killed at the scene, and 84 people were injured. Another injured passenger later died, and 34 passengers, including two in critical condition, were treated in several hospitals.

2020 Lodi derailment

On 6 February 2020, a high-speed train traveling at derailed at Livraga, Lombardy, Italy. The two drivers were killed and 31 were injured. The cause as preliminary reported by investigators that by a set of junction points was put in the reverse position, but were reported to the signalling system as in the normal - i.e. straight - position.

Ridership

High speed rail ridership has been increasing rapidly since 2000. At the beginning of the century, the largest share of ridership was on the Japanese Shinkansen network.
In 2000, the Shinkansen was responsible for about 85% of the cumulative world ridership up to that point.
This has been progressively surpassed by the Chinese high speed rail network, which has been the largest contributor of global ridership growth since its inception.
As of 2018, annual ridership of the Chinese high speed rail network is over five times larger than that of the Shinkansen.
YearAnnual world HSRAnnual world airlines
20004351,674
20055591,970
20108952,628
20121,1852,894
20141,4703,218
2016~2,070 3,650

Records

Speed

There are several definitions of "maximum speed":
Conventional rail
Since the 1955 record, France has nearly continuously held the absolute world speed record. The latest record is held by a SNCF TGV POS trainset, which reached in 2007, on the newly constructed LGV Est high-speed line. This run was for proof of concept and engineering, not to test normal passenger service.
Unconventional rail
The speed record for a pre-production unconventional passenger train was set by a seven-car L0 series manned maglev train at on 21 April 2015.

Maximum speed in service

, the fastest trains currently in commercial operation are :
  1. Shanghai Maglev :
  2. CR400AF, CR400BF, CRH2C, CRH3C, CRH380A & AL, CRH380B, BL & CL, CRH380D :
  3. SNCF TGV Duplex, SNCF TGV Réseau, SNCF TGV POS, TGV Euroduplex :
  4. Eurostar e320 :
  5. E5 Series Shinkansen, E6 Series Shinkansen, H5 Series Shinkansen:
  6. ICE 3 Class 403, 406, 407 :
  7. AVE Class 103 :
  8. KTX-I, KTX-II, KTX-III :
  9. ETR 500, ETR 400, AGV 575 :
Many of these trains and their networks are technically capable of higher speeds but they are capped out of economic and commercial considerations
Levitation trains
The Shanghai Maglev Train reaches during its daily service on its dedicated line, holding the speed record for commercial train service.
Conventional rail
The fastest operating conventional trains are the Chinese CR400A and CR400B running on Beijing–Shanghai HSR, after China relaunched its 350 km/h class service on select services effective 21 September 2017. In China, from July 2011 until September 2017, the maximum speed was officially, but a tolerance was acceptable, and trains often reached. Before that, from August 2008 to July 2011, China Railway High-speed trains held the highest commercial operating speed record with on some lines such as the Wuhan–Guangzhou high-speed railway.
The speed of the service was reduced in 2011 due to high costs and safety concerns the top speeds in China were reduced to on 1 July 2011. Six years later they started to be restored to their original high speeds.
The second fastest operating conventional trains are the French TGV POS, German ICE 3, and Japanese E5 and E6 Series Shinkansen with a maximum commercial speed of, the former two on some French high-speed lines, and the latter on a part of Tohoku Shinkansen line.
In Spain, on the Madrid–Barcelona HSL, maximum speed is.

Service distance

The China Railway G403/4, G405/6 and D939/40 Beijing–Kunming train, which began service on 28 December 2016, are the longest high-speed rail services in the world.

Existing high-speed rail systems by country

The early high-speed lines, built in France, Japan, and Spain, were between pairs of large cities. In France, this was Paris–Lyon, in Japan, Tokyo–Osaka, in Spain, Madrid–Seville. In European and East Asian countries, dense networks of urban subways and railways provide connections with high-speed rail lines.

East Asia

China

China has the largest network of high-speed railways in the world and in 2018 it encompassed of high-speed rail or 60% of the world's total. The HSR building boom continues with the HSR network set to reach in 2025. It is also the world's busiest with an annual ridership of over 1.44 billion in 2016. According to Railway Gazette, select trains between Beijing South to Nanjing South on the Beijing–Shanghai high-speed railway have the fastest average operating speed in the world at as of 2019.
The improved mobility and inter connectivity created by these new high speed rail lines has generated a whole new high speed commuter market around some urban areas. Commutes via high speed rail to and from surrounding Hebei and Tianjin into Beijing have become increasingly common, likewise are between the cities surrounding Shanghai, Shenzhen and Guangzhou.

Japan

In Japan, intra-city rail daily usage per capita is the highest, with cumulative ridership of 6 billion passengers.

South Korea

Since its opening in 2004, KTX has transferred over 360 million passengers until April 2013. For any transportation involving travel above, the KTX secured a market share of 57% over other modes of transport, which is by far the largest.

Taiwan

is a high-speed rail system that has only one line. It is approximately long, along the west coast of Taiwan from the national capital Taipei to the southern city of Kaohsiung. The construction was managed by Taiwan High Speed Rail Corporation and the total cost of the project was US$18 billion. The private company operates the line fully, and the system is based primarily on Japan's Shinkansen technology.
Eight initial stations were built during the construction of the High Speed Rail system: Taipei, Banqiao, Taoyuan, Hsinchu, Taichung, Chiayi, Tainan, and Zuoying. The line now has 12 total stations as of August 2018.

Middle East and Africa

Morocco

In November 2007 the Moroccan government decided to undertake the construction of a high-speed rail line between the economic capital Casablanca and Tangier, one of the largest harbour cities on the Strait of Gibraltar. The line will also serve the capital Rabat and Kenitra. The first section of the line, Kenitra–Tangier high-speed rail line, was completed in 2018.

Saudi Arabia

Plans in Saudi Arabia to begin service on a high-speed line consist of a phased opening starting with the route from Medina to King Abdullah Economic City followed up with the rest of the line to Mecca the following year. The Haramain high-speed railway opened in 2018.

Turkey

The Turkish State Railways started building high-speed rail lines in 2003. The first section of the line, between Ankara and Eskișehir, was inaugurated on 13 March 2009. It is a part of the Istanbul to Ankara high-speed rail line. A subsidiary of Turkish State Railways, Yüksek Hızlı Tren is the sole commercial operator of high-speed trains in Turkey.
The construction of three separate high-speed lines from Ankara to Istanbul, Konya and Sivas, as well as taking an Ankara–İzmir line to the launch stage, form part of the Turkish Ministry of Transport's strategic aims and targets. Turkey plans to construct a network of high-speed lines in the early part of the 21st century, targeting a network of high-speed lines by 2013 and a network by the year 2023.

Europe

France

Market segmentation has principally focused on the business travel market. The French original focus on business travelers is reflected by the early design of the TGV trains. Pleasure travel was a secondary market; now many of the French extensions connect with vacation beaches on the Atlantic and Mediterranean, as well as major amusement parks and also the ski resorts in France and Switzerland. Friday evenings are the peak time for TGVs. The system lowered prices on long-distance travel to compete more effectively with air services, and as a result some cities within an hour of Paris by TGV have become commuter communities, increasing the market while restructuring land use.
On the Paris–Lyon service, the number of passengers grew sufficiently to justify the introduction of double-decker coaches. Later high-speed rail lines, such as the LGV Atlantique, the LGV Est, and most high-speed lines in France, were designed as feeder routes branching into conventional rail lines, serving a larger number of medium-sized cities.

Germany

Germany's first high-speed lines ran north–south, for historical reasons, and later developed east–west after German unification. In the early 1900s, Germany became the first country to run a prototype electric train at speeds in excess of 200 km/h, and during the 1930s several steam and diesel trains achieved revenue speeds of 160 km/h in daily service. The InterCityExperimental briefly held the world speed record for a steel-wheel-on-steel-rails vehicle during the 1980s. The InterCityExpress entered revenue service in 1991 and serves purpose-built high-speed lines upgraded legacy lines and unmodified legacy lines. Lufthansa, Germany's flag carrier, has entered into a codeshare agreement with Deutsche Bahn where ICEs run as "feeder flights" bookable with a Lufthansa flight number under the AIRail program.

Italy

During the 1920s and 1930s, Italy was one of the first countries to develop the technology for high-speed rail. The country constructed the Direttissime railways connecting major cities on dedicated electrified high-speed track and developed the fast ETR 200 trainset. After the Second World War and the fall of the fascist regime, interest in high-speed rail dwindled, with the successive governments considering it too costly and developing the tilting Pendolino, to run at medium-high speed on conventional lines, instead. The only exception was the Direttissima between Florence and Rome, but it was not conceived to be part of a high-speed line on large scale.
A true dedicated high-speed rail network was developed during the 1980s and the 1990s, and of high-speed rail were fully operational by 2010. Frecciarossa services are operated with ETR 500 and Frecciarossa 1000 non-tilting trains at 25kVAC, 50 Hz power. The operational speed of the service is.
Over 100 million passengers used the Frecciarossa from the service introduction up to the first months of 2012. The high-speed rail system serves about 20 billion passenger-km per year as of 2016.
Italian high-speed services are profitable without subsidies.
Nuovo Trasporto Viaggiatori, the world's first private open-access operator of high-speed rail, is operative in Italy since 2012.

Norway

As of 2015, Norway's fastest trains have a commercial top speed of and the FLIRT trains may attain. A velocity of is permitted on the Gardermoen Line, which links the Gardermoen airport to Oslo and a part of the main line northwards to Trondheim.
Some parts of the trunk railways around Oslo are renewed and built for :
The existing Saint Petersburg–Moscow Railway can operate at maximum speeds of 250 km/h, and the Helsinki-Saint Petersburg railway capable of a maximum of 200 km/h.
Future areas include freight lines, such as the Trans-Siberian Railway in Russia, which would allow 3-day Far East to Europe service for freight, potentially fitting in between the months by ship and hours by air.

Spain

Spain has built an extensive high-speed rail network, with a length of , the longest in Europe. It uses standard gauge as opposed to the Iberian gauge used in most of the national railway network, meaning that the high-speed tracks are separated and not shared with local trains or freight. Although standard gauge is the norm for Spanish high speed rail, since 2011 there exists a regional high speed service running on Iberian gauge with special trains that connects the cities of Ourense, Santiago de Compostela, A Coruña, and Vigo in northwestern Spain. Connections to the French network exist since 2013, with direct trains from Paris to Barcelona. Although on the French side, conventional speed tracks are used from Perpignan to Montpellier.

Switzerland

High-speed north–south freight lines in Switzerland are under construction, avoiding slow mountainous truck traffic, and lowering labour costs. The new lines, in particular the Gotthard Base Tunnel, are built for. But the short high-speed parts and the mix with freight will lower the average speeds. The limited size of the country gives fairly short domestic travel times anyway. Switzerland is investing money in lines on French and German soil to enable better access to the high speed rail networks of those countries from Switzerland.

United Kingdom

The UK's fastest high-speed line connects London St Pancras with Brussels and Paris through the Channel Tunnel. At speeds of up to, it is the only high-speed line in Britain with an operating speed of more than.
The Great Western Main Line, South Wales Main Line, West Coast Main Line, Midland Main Line, Cross Country Route and East Coast Main Line all have maximum speed limits of on part of the line. Attempts to increase speeds to on both the West Coast Main Line and East Coast Main Line have failed because the trains on those lines do not have cab signalling, which is a legal requirement in the UK for trains to be permitted to operate at speeds greater than due to the impracticality of observing lineside signals at such speeds.

Americas

United States

The United States has domestic definitions for high-speed rail varying between jurisdictions.
Amtrak's Acela Express, Northeast Regional, Keystone Service and certain MARC Penn Line express trains are currently the only high-speed services in the country. The Acela Express links Boston, New York City, Philadelphia, Baltimore, and Washington, D.C., and while Northeast Regional trains travel the whole of the same route, but make more station stops. MARC Regional/Commuter rail and Keystone Service trains travel over portions of the route. The California High-Speed Rail project, eventually linking the 5 largest cities in California, is planned to have its first operating segment, between Merced and Bakersfield, in 2027.

Inter-city effects

With high speed rail there has been an increase in accessibility within cities. It allows for urban regeneration, accessibility in cities near and far, and efficient inter-city relationships. Better inter-city relationships lead to high level services to companies, advanced technology, and marketing. The most important effect of HSR is the increase of accessibility due to shorter travel times. HSR lines have been used to create long-distance routes which in many cases cater to business travelers. However, there have also been short-distance routes that have revolutionized the concepts of HSR. They create commuting relationships between cities opening up more opportunities. Using both longer distance and shorter distance rail in one country allows for the best case of economic development, widening the labor and residential market of a metropolitan area and extending it to smaller cities.

Closures

The KTX Incheon International Airport to Seoul Line was closed in 2018, due to a mix of issues, including poor ridership and track sharing. The AREX was not constructed as high-speed rail, resulting a cap of 150 km/h on KTX service in its section.
In China, many conventional lines upgraded up to 200 km/h had high-speed services shifted to parallel high-speed lines. These lines, often going through many towns and having level crossings, are still used for local trains and freight trains. The most recent case is high speed services on the Hankou–Danjiangkou railway being shifted to the Wuhan–Shiyan high-speed railway.