Time perception


Time perception is a field of study within psychology, cognitive linguistics and neuroscience that refers to the subjective experience, or sense, of time, which is measured by someone's own perception of the duration of the indefinite and unfolding of events. The perceived time interval between two successive events is referred to as perceived duration. Though directly experiencing or understanding another person's perception of time is not possible, such a perception can be objectively studied and inferred through a number of scientific experiments. Some temporal illusions help to expose the underlying neural mechanisms of time perception.
Pioneering work, emphasizing species-specific differences, was conducted by Karl Ernst von Baer.

Theories

There are many theories and computational models for time perception mechanism in the brain. The following are a few examples of them.
William J. Friedman also contrasted two theories for a sense of time:
Another theory involves the brain's subconscious tallying of "pulses" during a specific interval, forming a biological stopwatch. This theory alleges that the brain can run multiple biological stopwatches at one time depending on the type of task one is involved in. The location of these pulses and what these pulses actually consist of is unclear. This model is only a metaphor and does not stand up in terms of brain physiology or anatomy.
Moreover, time perception is usually categorized under following three distinct ranges due to the fact that different range of durations are processed in different part of the brain.
The present is the time duration wherein a state of consciousness is experienced as being in the present. The term was first introduced by the philosopher E. R. Clay in 1882, and was further developed by William James. James defined the specious present to be "the prototype of all conceived times... the short duration of which we are immediately and incessantly sensible". In "Scientific Thought", C. D. Broad further elaborated on the concept of the specious present and considered that the specious present may be considered as the temporal equivalent of a sensory datum. A version of the concept was used by Edmund Husserl in his works and discussed further by Francisco Varela based on the writings of Husserl, Heidegger, and Merleau-Ponty.

Neuroscientific perspectives

Although the perception of time is not associated with a specific sensory system, psychologists and neuroscientists suggest that humans do have a system, or several complementary systems, governing the perception of time. Time perception is handled by a highly distributed system involving the cerebral cortex, cerebellum and basal ganglia. One particular component, the suprachiasmatic nucleus, is responsible for the circadian rhythm, while other cell clusters appear to be capable of shorter timekeeping. There is some evidence that very short durations are processed by dedicated neurons in early sensory parts of the brain
Professor Warren Meck devised a physiological model for measuring the passage of time. He found the representation of time to be generated by the oscillatory activity of cells in the upper cortex. The frequency of these cells' activity is detected by cells in the dorsal striatum at the base of the forebrain. His model separated explicit timing and implicit timing. Explicit timing is used in estimating the duration of a stimulus. Implicit timing is used to gauge the amount of time separating one from an impending event that is expected to occur in the near future. These two estimations of time do not involve the same neuroanatomical areas. For example, implicit timing often occurs to achieve a motor task, involving the cerebellum, left parietal cortex, and left premotor cortex. Explicit timing often involves the supplementary motor area and the right prefrontal cortex.
Two visual stimuli, inside someone's field of view, can be successfully regarded as simultaneous up to five milliseconds.
In the popular essay "Brain Time", David Eagleman explains that different types of sensory information are processed at different speeds by different neural architectures. The brain must learn how to overcome these speed disparities if it is to create a temporally unified representation of the external world: "if the visual brain wants to get events correct timewise, it may have only one choice: wait for the slowest information to arrive. To accomplish this, it must wait about a tenth of a second. In the early days of television broadcasting, engineers worried about the problem of keeping audio and video signals synchronized. Then they accidentally discovered that they had around a hundred milliseconds of slop: As long as the signals arrived within this window, viewers' brains would automatically resynchronize the signals". He goes on to say that "This brief waiting period allows the visual system to discount the various delays imposed by the early stages; however, it has the disadvantage of pushing perception into the past. There is a distinct survival advantage to operating as close to the present as possible; an animal does not want to live too far in the past. Therefore, the tenth-of- a-second window may be the smallest delay that allows higher areas of the brain to account for the delays created in the first stages of the system while still operating near the border of the present. This window of delay means that awareness is retroactive, incorporating data from a window of time after an event and delivering a delayed interpretation of what happened."
Experiments have shown that rats can successfully estimate a time interval of approximately 40 seconds, despite having their cortex entirely removed. This suggests that time estimation may be a low level process.

Ecological perspectives

In recent history, ecologists and psychologists have been interested in whether and how time is perceived by non-human animals, as well as which functional purposes are served by the ability to perceive time. Studies have demonstrated that many species of animals, including both vertebrates and invertebrates, have cognitive abilities that allow them to estimate and compare time intervals and durations in a similar way to humans.
There is empirical evidence that metabolic rate has an impact on animals' ability to perceive time. In general, it is true within and across taxa that animals of smaller size, which have a fast metabolic rate, experience time more slowly than animals of larger size, which have a slow metabolic rate. Researchers suppose that this could be the reason why small-bodied animals are generally better at perceiving time on a small scale, and why they are more agile than larger animals.

Time perception in vertebrates

Examples in [fish]

In a lab experiment, goldfish were conditioned to receive a light stimulus followed shortly by an aversive electric shock, with a constant time interval between the two stimuli. Test subjects showed an increase in general activity around the time of the electric shock. This response persisted in further trials in which the light stimulus was kept but the electric shock was removed. This suggests that goldfish are able to perceive time intervals and to initiate an avoidance response at the time when they expect the distressing stimulus to happen.
In two separate studies, golden shiners and dwarf inangas demonstrated the ability to associate the availability of food sources to specific locations and times of day, called time-place learning. In contrast, when tested for time-place learning based on predation risk, inangas were unable to associate spatiotemporal patterns to the presence or absence of predators.

Examples in [bird]s

When presented with the choice between obtaining food at regular intervals or at stochastic intervals, starlings can discriminate between the two types of intervals and consistently prefer getting food at variable intervals. This is true whether the total amount of food is the same for both options or if the total amount of food is unpredictable in the variable option. This suggests that starlings have an inclination for risk-prone behavior.
Pigeons are able to discriminate between different times of day and show time-place learning. After training, lab subjects were successfully able to peck specific keys at different times of day in exchange for food, even after their sleep/wake cycle was artificially shifted. This suggests that to discriminate between different times of day, pigeons can use an internal timer that is independent of external cues. However, a more recent study on time-place learning in pigeons suggests that for a similar task, test subjects will switch to a non-circadian timing mechanism when possible to save energy resources. Experimental tests revealed that pigeons are also able to discriminate between cues of various durations, but that they are less accurate when timing auditory cues than when timing visual cues.

Examples in [mammal]s

A study on privately owned dogs revealed that dogs are able to perceive durations ranging from minutes to several hours differently. Dogs reacted with increasing intensity to the return of their owners when they were left alone for longer durations, regardless of the owners' behavior.
After being trained with food reinforcement, female wild boars are able to correctly estimate time intervals of days by asking for food at the end of each interval, but they are unable to accurately estimate time intervals of minutes with the same training method.
When trained with positive reinforcement, rats can learn to respond to a signal of a certain duration, but not to signals of shorter or longer durations, which demonstrates that they can discriminate between different durations. Rats have demonstrated time-place learning, and can also learn to infer correct timing for a specific task by following an order of events, suggesting that they might be able to use an ordinal timing mechanism. Like pigeons, rats are thought to have the ability to use a circadian timing mechanism for discriminating time of day.

Time perception in invertebrates

When returning to the hive with nectar, forager honey bees need to know the current ratio of nectar-collecting to nectar-processing rates in the colony. To do so, they estimate the time it takes them to find a food-storer bee, which will unload the forage and store it. The longer it takes them to find one, the busier the food-storer bees are; and therefore the higher the nectar-collecting rate of the colony. Forager bees also assess the quality of nectar by comparing the length of time it takes to unload the forage: a longer unloading time indicates higher quality nectar. They compare their own unloading time to the unloading time of other foragers present in the hive, and adjust their recruiting behavior accordingly. For instance, honey bees reduce the duration of their waggle dance if they judge their own yield to be inferior. Scientists have demonstrated that anesthesia disrupts the circadian clock and impairs the time perception of honey bees, as observed in humans. Experiments revealed that a 6-hour-long general anesthesia significantly delayed the start of the foraging behaviour of honeybees if induced during daytime, but not if induced during nighttime.
Bumble bees can be successfully trained to respond to a stimulus after a certain time interval has elapsed. Studies have shown that they can also learn to simultaneously time multiple interval durations.
In a single study, colonies from three species of ants from the genus Myrmica were trained to associate feeding sessions with different times. The trainings lasted several days, where each day the feeding time was delayed by 20 minutes compared to the previous day. In all three species, at the end of the training, most individuals were present at the feeding spot at the correct expected times, suggesting that ants are able to estimate the time running, keep in memory the expected feeding time and to act anticipatively.

Types of temporal illusions

A temporal illusion is a distortion in the perception of time. Time perception refers to a variety of time-related tasks. For example:
Short list of types of temporal illusions:
The Kappa effect or perceptual time dilation is a form of temporal illusion verifiable by experiment, wherein the temporal duration between a sequence of consecutive stimuli is thought to be relatively longer or shorter than its actual elapsed time, due to the spatial/auditory/tactile separation between each consecutive stimuli. The kappa effect can be displayed when considering a journey made in two parts that take an equal amount of time. Between these two parts, the journey that covers more distance may appear to take longer than the journey covering less distance, even though they take an equal amount of time.

Eye movements and "Chronostasis"

The perception of space and time undergoes distortions during rapid saccadic eye movements.
Chronostasis is a type of temporal illusion in which the first impression following the introduction of a new event or task demand to the brain appears to be extended in time. For example, chronostasis temporarily occurs when fixating on a target stimulus, immediately following a saccade. This elicits an overestimation in the temporal duration for which that target stimulus was perceived. This effect can extend apparent durations by up to 500 ms and is consistent with the idea that the visual system models events prior to perception. The most well-known version of this illusion is known as the stopped-clock illusion, wherein a subject's first impression of the second-hand movement of an analog clock, subsequent to one's directed attention to the clock, is the perception of a slower-than-normal second-hand movement rate.
The occurrence of chronostasis extends beyond the visual domain into the auditory and tactile domains. In the auditory domain, chronostasis and duration overestimation occur when observing auditory stimuli. One common example is a frequent occurrence when making telephone calls. If, while listening to the phone's dial tone, research subjects move the phone from one ear to the other, the length of time between rings appears longer. In the tactile domain, chronostasis has persisted in research subjects as they reach for and grasp objects. After grasping a new object, subjects overestimate the time in which their hand has been in contact with this object. In other experiments, subjects turning a light on with a button were conditioned to experience the light before the button press.

Flash-lag effect

In an experiment, participants were told to stare at an "x" symbol on a computer screen whereby a moving blue doughnut-like ring repeatedly circled the fixed "x" point. Occasionally, the ring would display a white flash for a split second that physically overlapped the ring's interior. However, when asked what was perceived, participants responded that they saw the white flash lagging behind the center of the moving ring. In other words, despite the reality that the two retinal images were actually spatially aligned, the flashed object was usually observed to trail a continuously moving object in space — a phenomenon referred to as the flash-lag effect.
The first proposed explanation, called the 'motion extrapolation' hypothesis, is that the visual system extrapolates the position of moving objects but not flashing objects when accounting for neural delays. The second proposed explanation by David Eagleman and Sejnowski, called the 'latency difference' hypothesis, is that the visual system processes moving objects at a faster rate than flashed objects. In the attempt to disprove the first hypothesis, David Eagleman conducted an experiment in which the moving ring suddenly reverses direction to spin in the other way as the flashed object briefly appears. If the first hypothesis were correct, we would expect that, immediately following reversal, the moving object would be observed as lagging behind the flashed object. However, the experiment revealed the opposite — immediately following reversal, the flashed object was observed as lagging behind the moving object. This experimental result supports of the 'latency difference' hypothesis. A recent study tries to reconcile these different approaches by approaching perception as an inference mechanism aiming at describing what is happening at the present time.

Oddball effect

Humans typically overestimate the perceived duration of the initial and final event in a stream of identical events.
The [|oddball effect] may serve an evolutionarily adapted “alerting” function and is consistent with reports of time slowing down in threatening situations. The effect seems to be strongest for images that are expanding in size on the retina, in other words, that are "looming" or approaching the viewer, and the effect can be eradicated for oddballs that are contracting or perceived to be receding from the viewer. The effect is also reduced or reversed with a static oddball presented among a stream of expanding stimuli.
Initial studies suggested that this oddball-induced “subjective time dilation” expanded the perceived duration of oddball stimuli by 30–50% but subsequent research has reported more modest expansion of around 10% or less. The direction of the effect, whether the viewer perceives an increase or a decrease in duration, also seems to be dependent upon the stimulus used.

Reversal of temporal order judgment

Numerous experimental findings suggest that temporal order judgments of actions preceding effects can be reversed under special circumstances. Experiments have shown that sensory simultaneity judgments can be manipulated by repeated exposure to non-simultaneous stimuli. In an experiment conducted by David Eagleman, a temporal order judgment reversal was induced in subjects by exposing them to delayed motor consequences. In the experiment, subjects played various forms of video games. Unknown to the subjects, the experimenters introduced a fixed delay between the mouse movements and the subsequent sensory feedback. For example, a subject may not see a movement register on the screen until 150 milliseconds after the mouse had moved. Participants playing the game quickly adapted to the delay and felt as though there was less delay between their mouse movement and the sensory feedback. Shortly after the experimenters removed the delay, the subjects commonly felt as though the effect on the screen happened just before they commanded it. This work addresses how the perceived timing of effects is modulated by expectations, and the extent to which such predictions are quickly modifiable. In an experiment conducted by Haggard and colleagues in 2002, participants pressed a button that triggered a flash of light at a distance after a slight delay of 100 milliseconds. By repeatedly engaging in this act, participants had adapted to the delay. The experimenters then showed the flash of light instantly after the button was pressed. In response, subjects often thought that the flash had occurred before the button was pressed. Additionally, when the experimenters slightly reduced the delay, and shortened the spatial distance between the button and the flash of light, participants had often claimed again to have experienced the effect before the cause.
Several experiments also suggest that temporal order judgment of a pair of tactile stimuli delivered in rapid succession, one to each hand, is noticeably impaired by crossing the hands over the midline. However, congenitally blind subjects showed no trace of temporal order judgment reversal after crossing the arms. These results suggest that tactile signals taken in by the congenitally blind are ordered in time without being referred to a visuospatial representation. Unlike the congenitally blind subjects, the temporal order judgments of the late-onset blind subjects were impaired when crossing the arms to a similar extent as non-blind subjects. These results suggest that the associations between tactile signals and visuospatial representation is maintained once it is accomplished during infancy. Some research studies have also found that the subjects showed reduced deficit in tactile temporal order judgments when the arms were crossed behind their back than when they were crossed in front.

Physiological associations

Tachypsychia

Tachypsychia is a neurological condition that alters the perception of time, usually induced by physical exertion, drug use, or a traumatic event. For someone affected by tachypsychia, time perceived by the individual either lengthens, making events appear to slow down, or contracts, objects appearing as moving in a speeding blur.

Effects of emotional states

Awe

Research has suggested the feeling of awe has the ability to expand one's perceptions of time availability. Awe can be characterized as an experience of immense perceptual vastness that coincides with an increase in focus. Consequently, it is conceivable that one's temporal perception would slow down when experiencing awe.

Fear

Possibly related to the oddball effect, research suggests that time seems to slow down for a person during dangerous events, or when a person skydives or bungee jumps, where they're capable of complex thoughts in what would normally be the blink of an eye. This reported slowing in temporal perception may have been evolutionarily advantageous because it may have enhanced one's ability to intelligibly make quick decisions in moments that were of critical importance to our survival. However, even though observers commonly report that time seems to have moved in slow motion during these events, it is unclear whether this is a function of increased time resolution during the event, or instead an illusion created by the remembering of an emotionally salient event.
A strong time dilation effect has been reported for perception of objects that were looming, but not of those retreating, from the viewer, suggesting that the expanding discs — which mimic an approaching object — elicit self-referential processes which act to signal the presence of a possible danger. Anxious people, or those in great fear, experience greater "time dilation" in response to the same threat stimuli due to higher levels of epinephrine, which increases brain activity. In such circumstances, an illusion of time dilation could assist an effective escape. When exposed to a threat, three-year-old children were observed to exhibit a similar tendency to overestimate elapsed time.
Research suggests that the effect appears only at the point of retrospective assessment, rather than occurring simultaneously with events as they happened. Perceptual abilities were tested during a frightening experience — a free fall — by measuring people's sensitivity to flickering stimuli. The results showed that the subjects' temporal resolution was not improved as the frightening event was occurring. Events appear to have taken longer only in retrospect, possibly because memories were being more densely packed during the frightening situation.
Other researchers suggest that additional variables could lead to a different state of consciousness in which altered time perception does occur during an event. Research does demonstrate that visual sensory processing increases in scenarios involving action preparation. Participants demonstrated a higher detection rate of rapidly presented symbols when preparing to move, as compared to a control without movement.
People shown extracts from films known to induce fear often overestimated the elapsed time of a subsequently presented visual stimulus, whereas people shown emotionally neutral clips or those known to evoke feelings of sadness showed no difference. It is argued that fear prompts a state of arousal in the amygdala, which increases the rate of a hypothesized "internal clock". This could be the result of an evolved defensive mechanism triggered by a threatening situation.

Changes with age

Psychologists have found that the subjective perception of the passing of time tends to speed up with increasing age in humans. This often causes people to increasingly underestimate a given interval of time as they age. This fact can likely be attributed to a variety of age-related changes in the aging brain, such as the lowering in dopaminergic levels with older age; however, the details are still being debated.
Very young children literally "live in time" before gaining an awareness of its passing. A child will first experience the passing of time when he or she can subjectively perceive and reflect on the unfolding of a collection of events. A child's awareness of time develops during childhood, when the child's attention and short-term memory capacities form — this developmental process is thought to be dependent on the slow maturation of the prefrontal cortex and hippocampus.
One day would be approximately 1/4,000 of the life of an 11-year-old, but approximately 1/20,000 of the life of a 55-year-old. This helps to explain why a random, ordinary day may therefore appear longer for a young child than an adult. The short term appears to go faster in proportion to the square root of the perceiver's age. So a year would be experienced by a 55-year-old as passing approximately 2¼ times more quickly than a year experienced by an 11-year-old. If long-term time perception is based solely on the proportionality of a person's age, then the following four periods in life would appear to be quantitatively equal: ages 5–10, ages 10–20, ages 20–40, age 40–80.
The common explanation is that most external and internal experiences are new for young children but repetitive for adults. Children have to be extremely engaged in the present moment because they must constantly reconfigure their mental models of the world to assimilate it and manage behaviour properly. Adults however may rarely need to step outside mental habits and external routines. When an adult frequently experiences the same stimuli, they seem "invisible" because they have already been sufficiently and effectively mapped by the brain. This phenomenon is known as neural adaptation. Thus, the brain will record fewer densely rich memories during these frequent periods of disengagement from the present moment. Consequently, the subjective perception is often that time passes by at a faster rate with age.

Effects of drugs on time perception

such as thyroxine, caffeine, and amphetamines lead to overestimation of time intervals by both humans and rats, while depressants and anesthetics such as barbiturates, nitrous oxide can have the opposite effect and lead to underestimation of time intervals. The level of activity in the brain of neurotransmitters such as dopamine and norepinephrine may be the reason for this. A research on stimulant-dependent individuals showed several abnormal time processing characteristics including larger time differences for effective duration discrimination, and overestimating the duration of a relatively long time interval. Altered time processing and perception in SDI could explain the difficulty SDI have with delaying gratification. Another research studied the dose-dependent effect in methamphetamine dependents with short term abstinence and its effects on time perception. Results shows that motor timing but not perceptual timing, was altered in meth dependents, which persisted for at least 3 months of abstinence. Dose-dependent effects on time perception were only observed when short-term abstinent meth abusers processed long time intervals. The study concluded that time perception alteration in meth dependents is task specific and dose dependent.
Hallucinogens such as psilocybin, marijuana, mescaline, LSD, makes subjects’ estimate of absolute duration, very long. The effect of cannabis on time perception has been studied with inconclusive results mainly due to methodological variations and the paucity of research. Even though 70% of time estimation studies report over-estimation, the findings of time production and time reproduction studies remain inconclusive. Studies show consistently throughout the literature that most cannabis users self-report the experience of a slowed perception of time. In the laboratory, researchers have confirmed the effect of cannabis on the perception of time in both humans and animals. Using PET Scans it was observed that participants who showed a decrease in cerebellar CBF also had a significant alteration in time sense. The relationship between decreased cerebellar flow and impaired time sense is of interest as the cerebellum is linked to an internal timing system. In addition, a marijuana user may underestimate the speed of a motor vehicle, increasing the chances of accident.

Effects of body temperature

The chemical clock hypothesis implies a causal link between body temperature and the perception of time.
Past work show that increasing body temperature tends to make individuals experience a dilated perception of time and they perceive durations longer than they actually did, ultimately leading them to under-estimate time durations. While decreasing body temperature has the opposite effect - causing participants to experience a condensed perception of time leading them to over-estimate time duration - the observations of the latter type were rare. Research establishes a parametric effect of body temperature on time perception with higher temperatures generally producing faster subjective time and vice versa. This is especially seen to be true under changes in arousal levels and stressful events.

Effects of clinical disorders

Effect of Attention Deficit Hyperactivity Disorder(ADHD) on time perception

is a behavioral disorder often marked by either inattention and hyperactivity or impulsivity that leads to impairment in social, academic or occupational activities. Some people can also show symptoms belonging to both subtypes.
ADHD is linked to abnormalities in dopamine levels in the brain as well as to noticeable impairments in time perception.Numerous imaging studies have demonstrated that the caudate nucleus and globus pallidus which contain a high density of DA receptors are smaller in ADHD than in control groups, ADHD groups have smaller posterior brain regions and areas involved in coordinating activities of multiple brain regions. These volumetric differences between the two groups correlate with severity of ADHD and its symptoms. It appears that the abnormal fronto-parietal and fronto-striato- cerebellar networks in ADHD individuals seem to mediate the found defects in a broad range of timing tasks; indicating that ADHD can at least partly, be seen as a disorder of an abnormal temporal processing.
Individuals with ADHD have difficulties in discrimination activities and time estimation. It seems to them that time is passing by without them being able to complete tasks accurately. A study by Noreika et al. found that the most consistent deficits in ADHD seemed to affect sensorimotor synchronization, duration discrimination, duration reproduction and delay discounting tasks. Another study by Barkley found that problems with the working memory can affect the development of a sense of time in children with ADHD.
Studies conducted in 1997 tested the relationship between ADHD and deficiency in sense of time perception; predicting and evaluating the effects of interval duration, distraction, and stimulant medication on the reproductions of temporal durations in children with ADHD. Results showed that time perception is impaired in children with ADHD and the capacity to accurately reproduce time intervals in ADHD children does not seem to improve with administration of stimulant medication.
Work from 2003 used time reproduction tasks to compare time perception in children with and without ADHD. The results indicate that there was a great discrepancy in the scores between the two groups and indicated that children with ADHD have impaired time perception compared to the children without ADHD. Poor time perception affects the performance of social skills and other adaptive behaviors such as health consciousness and concerns for safety.
Although ADHD has been associated with neurologic abnormalities in the mesolimbic and dopaminergic systems, contrary to the 1997 study talked above, recent studies have found that when individuals with ADHD are treated medically, their perception of time tends to normalize. Ptacek et al. suggests that the existing evidence of altered time perception could be used to improve the diagnostic criteria of ADHD as well as help to improve the recognition of the symptoms in clinical settings.

Effect of Autism Spectrum Disorder(ASD) on time perception

, is a behavioral disorder characterized by severe and pervasive impairment in several areas of development including but not limited to reciprocal skills, social interaction skills, communication & language skills. Apart from these struggles self-reports and reports from people having regular contact with people with ASD indicate that they often see them struggle with time perception and sense of time. Individuals with autism seem to have a basic inability to make sense of past and present experiences, which has to do with comprehending the passage of time and linking it with current ongoing activities.
Allman and Falter present three general trends in the research on abnormal timing and time perception in ASD. Firstly, studies concentrating on the sub-second range have tended to find superior temporal discrimination differences in people with ASD. Secondly, studies in the supra-second range have tended to find impairments in longer durations beyond the limits of the ‘psychological present’ of about 3 seconds as described by William James and connected with increased variability. Thirdly, there is initial evidence indicating problems with conceptual notions of time in ASD.

Effect of Schizophrenia on time perception

is a mental disorder characterized by delusions, hallucinations, disorganized speech and behavior. Individuals suffering from schizophrenia have a varied perception of time compared to neurotypicals; also are less precise in judging the temporal order of events. Time perception impairment in schizophrenia was originally described by clinicians and later addressed in laboratory. Past work on schizophrenics indicated a great impairment in time sensitivity and perception leading to overestimation of time intervals. Due to the cognitive impairments that the disorder poses, there have not been any definitive conclusions about the nature of time perception irregularities. A recent study aimed to isolate a genuine time perception disorder in schizophrenia by testing id the patients' internal clock runs faster compared to healthy controls. Results indicated significant correlations between Time perception tasks and memory outcomes suggesting such impairments are directly related to memory impairment in schizophrenia. Schizophrenia has been associated with abnormalities in dopamine transmissions, which in turn, have been linked to the speed of the internal clock. The time overestimation has been suggested to be caused by accelerated time processing and may be associated with psychosis

Effect of Depression on time perception

is a mood disorder that is characterized by persistent feeling of sadness and loss of interest. Affective and cognitive disturbances are significant features in depression. These disturbances manifest as dysfunctional psychological tendencies affecting motivational behavior in performing tasks and also invoke disturbances related to time. Clinical evidences suggest that time perception during depressive episodes tend to be underestimated. However, there are also evidences to the contrary. A recent study focused to test if affective and cognitive disturbances in depression are synonymous with the subjective inability to accurately perceive time. The results indicated that temporal estimations of time are significantly affected by the cognitive and affective load in depressed participants.
Psychologists at Johannes Gutenberg University Mainz discovered that although depressed individuals perceive slow time passage, their estimates are just as accurate as normal individuals when asked to judge the duration of a specific time interval, such as two seconds or two minutes. People with depression often tend to experience the world differently from others, report changes in appetite, and sometimes feel that time drags on. In a study, mathematical psychologist Diana Kornbrot of the University of Hertfordshire and her colleagues applied the Beck Depression Inventory to gauge the mood of 46 participants. They found a correlation between participants’ BDI scores and the accuracy with which they could estimate the length of the sounds they heard and produced: Those with higher scores made more accurate estimates than those with lower scores. Another study examined changes in time perception as a function of depressive symptoms, with the Beck Depression Inventory. The results of this study indicated that the probe durations were underestimated by the depressive participants. The study also assessed the sadness scores by the Brief Mood Inventory Scale and suggested that the emotional state of sadness in the depressive participants goes some way to explaining their temporal performance. These results may be explained by a slowing down of the internal clock in the depressive participants.
It appears that those with mild depression seem to be better at paying attention to short periods of time, says psychologist Rachel Msetfi of the University of Limerick, a co-author of the study. These findings also suggest that people with depression experience a time dilation effect, and in effect support the notion of depressive realism, which suggests that people who are depressed have a more accurate perception of reality than others. Msetfi believes that this time dilation might be related to one of the symptoms of severe depression - helplessness, or the feeling that they are not in control of their lives, and this is usually accompanied by a feeling of guilt. Time perception is crucial for agency, the sense that we are in control of our actions. Normally, our actions are followed very closely in time by their consequences; this can give us the sense that the two are causally related, and that we are responsible for the consequences of our actions.