Real coordinate space
In mathematics, a real coordinate space of dimension, written or, is a coordinate space over the real numbers. This means that it is the set of the -tuples of real numbers. With component-wise addition and scalar multiplication, it is a real vector space.
Typically, the Cartesian coordinates of the elements of a Euclidean space form a real coordinate spaces. This explains the name of coordinate space and the fact that geometric terms are often used when working with coordinate spaces. For example, is a plane.
Coordinate spaces are widely used in geometry and physics, as their elements allow locating points in Euclidean spaces, and computing with them.
Definition and structures
For any natural number, the set consists of all -tuples of real numbers. It is called the "-dimensional real space" or the "real -space".An element of is thus a -tuple, and is written
where each is a real number. So, in multivariable calculus, the domain of a function of several real variables and the codomain of a real vector valued function are subsets of for some.
The real -space has several further properties, notably:
- With componentwise addition and scalar multiplication, it is a real vector space. Every -dimensional real vector space is isomorphic to it.
- With the dot product, it is an inner product space. Every -dimensional real inner product space is isomorphic to it.
- As every inner product space, it is a topological space, and a topological vector space.
- It is a Euclidean space and a real affine space, ane every Euclidean or affine space is isomorphic to it.
- It is an analytic manifold, and can be considered as the prototype of all manifolds, as, by definition, a manifold is, near each point, isomorphic to an open subset of.
- It is an algebraic variety, and every real algebraic variety is a subset of.
The domain of a function of several variables
Any function of real variables can be considered as a function on . The use of the real -space, instead of several variables considered separately, can simplify notation and suggest reasonable definitions. Consider, for, a function composition of the following form:where functions and are continuous. If
then is not necessarily continuous. Continuity is a stronger condition: the continuity of in the natural topology, also called multivariable continuity, which is sufficient for continuity of the composition.
Vector space
The coordinate space forms an -dimensional vector space over the field of real numbers with the addition of the structure of linearity, and is often still denoted. The operations on as a vector space are typically defined byThe zero vector is given by
and the additive inverse of the vector is given by
This structure is important because any -dimensional real vector space is isomorphic to the vector space.
Matrix notation
In standard matrix notation, each element of is typically written as a column vectorand sometimes as a row vector:
The coordinate space may then be interpreted as the space of all column vectors, or all row vectors with the ordinary matrix operations of addition and scalar multiplication.
Linear transformations from to may then be written as matrices which act on the elements of via left multiplication and on elements of via right multiplication. The formula for left multiplication, a special case of matrix multiplication, is:
Any linear transformation is a continuous function. Also, a matrix defines an open map from to if and only if the rank of the matrix equals to.
Standard basis
The coordinate space comes with a standard basis:To see that this is a basis, note that an arbitrary vector in can be written uniquely in the form
Geometric properties and uses
Orientation
The fact that real numbers, unlike many other fields, constitute an ordered field yields an orientation structure on. Any full-rank linear map of to itself either preserves or reverses orientation of the space depending on the sign of the determinant of its matrix. If one permutes coordinates, the resulting orientation will depend on the parity of the permutation.Diffeomorphisms of or domains in it, by their virtue to avoid zero Jacobian, are also classified to orientation-preserving and orientation-reversing. It has important consequences for the theory of differential forms, whose applications include electrodynamics.
Another manifestation of this structure is that the point reflection in has different properties depending on evenness of. For even it preserves orientation, while for odd it is reversed.
Affine space
understood as an affine space is the same space, where as a vector space acts by translations. Conversely, a vector has to be understood as a "difference between two points", usually illustrated by a directed line segment connecting two points. The distinction says that there is no canonical choice of where the origin should go in an affine -space, because it can be translated anywhere.Convexity
In a real vector space, such as, one can define a convex cone, which contains all non-negative linear combinations of its vectors. Corresponding concept in an affine space is a convex set, which allows only convex combinations.In the language of universal algebra, a vector space is an algebra over the universal vector space of finite sequences of coefficients, corresponding to finite sums of vectors, while an affine space is an algebra over the universal affine hyperplane in this space, a cone is an algebra over the universal orthant, and a convex set is an algebra over the universal simplex. This geometrizes the axioms in terms of "sums with restrictions on the coordinates".
Another concept from convex analysis is a convex function from to real numbers, which is defined through an inequality between its value on a convex combination of points and sum of values in those points with the same coefficients.
Euclidean space
The dot productdefines the norm on the vector space. If every vector has its Euclidean norm, then for any pair of points the distance
is defined, providing a metric space structure on in addition to its affine structure.
As for vector space structure, the dot product and Euclidean distance usually are assumed to exist in without special explanations. However, the real -space and a Euclidean -space are distinct objects, strictly speaking. Any Euclidean -space has a coordinate system where the dot product and Euclidean distance have the form shown [|above], called Cartesian. But there are many Cartesian coordinate systems on a Euclidean space.
Conversely, the above formula for the Euclidean metric defines the standard Euclidean structure on, but it is not the only possible one. Actually, any positive-definite quadratic form defines its own "distance", but it is not very different from the Euclidean one in the sense that
Such a change of the metric preserves some of its properties, for example the property of being a complete metric space.
This also implies that any full-rank linear transformation of, or its affine transformation, does not magnify distances more than by some fixed, and does not make distances smaller than times, a fixed finite number times smaller.
The aforementioned equivalence of metric functions remains valid if is replaced with, where is any convex positive homogeneous function of degree 1, i.e. a vector norm. Because of this fact that any "natural" metric on is not especially different from the Euclidean metric, is not always distinguished from a Euclidean -space even in professional mathematical works.
In algebraic and differential geometry
Although the definition of a manifold does not require that its model space should be, this choice is the most common, and almost exclusive one in differential geometry.On the other hand, Whitney embedding theorems state that any real differentiable -dimensional manifold can be embedded into.
Other appearances
Other structures considered on include the one of a pseudo-Euclidean space, symplectic structure, and contact structure. All these structures, although can be defined in a coordinate-free manner, admit standard forms in coordinates.is also a real vector subspace of complex coordinate space| which is invariant to complex conjugation; see also complexification.
Polytopes in R''n''
There are three families of polytopes which have simple representations in spaces, for any, and can be used to visualize any affine coordinate system in a real -space. Vertices of a hypercube have coordinates where each takes on one of only two values, typically 0 or 1. However, any two numbers can be chosen instead of 0 and 1, for example and 1. An -hypercube can be thought of as the Cartesian product of identical intervals on the real line. As an -dimensional subset it can be described with a system of inequalities:Each vertex of the cross-polytope has, for some, the coordinate equal to ±1 and all other coordinates equal to 0. This is a dual polytope of hypercube. As an -dimensional subset it can be described with a single inequality which uses the absolute value operation:
but this can be expressed with a system of power of two| linear inequalities as well.
The third polytope with simply enumerable coordinates is the standard simplex, whose vertices are standard basis vectors and the origin. As an -dimensional subset it is described with a system of linear inequalities:
Replacement of all "≤" with "<" gives interiors of these polytopes.
Topological properties
The topological structure of can be obtained not only [|from Cartesian product]. It is also identical to the natural topology induced by Euclidean metric discussed above: a set is open in the Euclidean topology if and only if it contains an open ball around each of its points. Also, is a linear topological space, and there is only one possible topology compatible with its linear structure. As there are many open linear maps from to itself which are not isometries, there can be many Euclidean structures on which correspond to the same topology. Actually, it does not depend much even on the linear structure: there are many non-linear diffeomorphisms.has the topological dimension.
An important result on the topology of, that is far from superficial, is Brouwer's invariance of domain. Any subset of that is homeomorphic to another open subset of is itself open. An immediate consequence of this is that is not homeomorphic to if – an intuitively "obvious" result which is nonetheless difficult to prove.
Despite the difference in topological dimension, and contrary to a naïve perception, it is possible to map a lesser-dimensional real space continuously and surjectively onto. A continuous space-filling curve is possible.
Examples
''n'' ≤ 1
Cases of do not offer anything new: is the real line, whereas is a singleton, understood as a zero vector space. However, it is useful to include these as trivial cases of theories that describe different.''n'' = 2
''n'' = 3
''n'' = 4
can be imagined using the fact that points, where each is either 0 or 1, are vertices of a tesseract, the 4-hypercube.The first major use of is a spacetime model: three spatial coordinates plus one temporal. This is usually associated with theory of relativity, although four dimensions were used for such models since Galilei. The choice of theory leads to different structure, though: in Galilean relativity the coordinate is privileged, but in Einsteinian relativity it is not. Special relativity is set in Minkowski space. General relativity uses curved spaces, which may be thought of as with a curved metric for most practical purposes. None of these structures provide a metric on.
Euclidean also attracts the attention of mathematicians, for example due to its relation to quaternions, a 4-dimensional real algebra themselves. See rotations in 4-dimensional Euclidean space for some information.
In differential geometry, is the only case where admits a non-standard differential structure: see exotic R4.
Norms on
One could define many norms on the vector space. Some common examples are- the p-norm, defined by for all where is a positive integer. The case is very important, because it is exactly the Euclidean norm.
- the -norm or maximum norm, defined by for all . This is the limit of all the p-norms:.
for all .
This defines an equivalence relation on the set of all norms on. With this result you can check that a sequence of vectors in converges with if and only if it converges with.
Here is a sketch of what a proof of this result may look like:
Because of the equivalence relation it is enough to show that every norm on is equivalent to the Euclidean norm. Let be an arbitrary norm on. The proof is divided in two steps:
- We show that there exists a, such that for all . In this step you use the fact that every can be represented as a linear combination of the standard basis:. Then with the Cauchy–Schwarz inequality, where.
- Now we have to find an, such that for all . Assume there is no such. Then there exists for every a , such that. Define a second sequence by. This sequence is bounded because. So because of the Bolzano–Weierstrass theorem there exists a convergent subsequence with limit . Now we show that but, which is a contradiction. It is, because and, so. This implies, so. On the other hand, because. This can not ever be true, so the assumption was false and there exists such a.
Footnotes