Convex combination


In convex geometry, a convex combination is a linear combination of points where all coefficients are non-negative and sum to 1.
More formally, given a finite number of points in a real vector space, a convex combination of these points is a point of the form
where the real numbers satisfy and
As a particular example, every convex combination of two points lies on the line segment between the points.
A set is convex if it contains all convex combinations of its points.
The convex hull of a given set of points is identical to the set of all their convex combinations.
There exist subsets of a vector space that are not closed under linear combinations but are closed under convex combinations. For example, the interval is convex but generates the real-number line under linear combinations. Another example is the convex set of probability distributions, as linear combinations preserve neither nonnegativity nor affinity.

Other objects