Hand evaluation
In contract bridge, various bidding systems have been devised to enable partners to describe their hands to each other so that they may reach the optimum contract. Key to this process is that players evaluate and re-evaluate the trick-taking potential of their hands as the auction proceeds and additional information about partner's hand and the opponent's hands becomes available.
Hand evaluation methods assess various features of a hand, including: its high card strength, shape or suit,, fit with partner, quality of suits and quality of the whole hand. The methods range from basic to complex, requiring partners to have the same understandings and agreements about their application in their bidding system.
Basic point-count system
Most bidding systems use a basic point-count system for hand evaluation using a combination of high card points and distributional points, as follows.High card points
First published in 1915 by Bryant McCampbell in Auction Tactics, the 4-3-2-1 count for honours was not established by computer analysis but was derived from the game Auction Pitch. Although 'Robertson's Rule' for bidding had been in use for more than a dozen years, McCampbell sought a more "simple scale of relative values. The Pitch Scale is the easiest to remember. "Called the Milton Work Point Count when popularized by him in the early Thirties and then the Goren Point Count when re-popularized by Work's disciple Charles Goren in the Fifties, and now known simply as the high-card point count, this basic evaluation method assigns numeric values to the top four honour cards as follows:
- ace = 4 HCP
- king = 3 HCP
- queen = 2 HCP
- jack = 1 HCP
Limitations
The combined HCP count between two balanced hands is generally considered to be a good indication, all else being equal, of the number of tricks likely to be made by the partnership. The rule of thumb for games and slams in notrump is as follows:- 25 HCP are necessary for game, i.e. 3 NT
- 33 HCP are necessary for a small slam, i.e. 6 NT
- 37 HCP are necessary for a grand slam, i.e. 7 NT
Although mostly effective for evaluating the combined trick-taking potential of two balanced hands played in notrump, even in this area of applicability the HCP is not infallible. Jeff Rubens gives the following example:
Both East hands are exactly the same, and both West hands have the same shape, the same HCP count, and the same high cards. The only difference between the West hands is that two low red cards and one low black card have been swapped.
With a total of 34 HCP in the combined hands, based on the above-mentioned HCP-requirement for slam, most partnerships would end in a small slam contract. Yet, the left layout produces 13 tricks in notrump, whilst the right layout on a diamond lead would fail to produce more than 10 tricks in notrump. In this case, the difference in trick-taking potential is due to duplication in the high card values: in the bottom layout the combined 20 HCP in spades and diamonds results in only five tricks. Because such duplication can often not be detected during bidding, the high card point method of hand evaluation, when used alone, provides only a preliminary estimate of the trick-taking potential of the combined hands and must be supplemented by other means for improved accuracy, particularly for unbalanced hands.
Accordingly, expert players use HCP as a starting point in the evaluation of their hands, and make adjustments based on:
- refinements to the HCP valuation for certain holdings,
- the use of additional point values for hand shape or distribution, and
- bidding techniques to determine the specifics of any control cards held by partner.
Refinements
;For aces and tensThe 4-3-2-1 high card point evaluation has been found to statistically undervalue aces and tens and alternatives have been devised to increase a hand's HCP value.
To adjust for aces, Goren recommended deducting one HCP for an aceless hand and adding one for holding four aces. Some adjust for tens by adding 1/2 HCP for each. Alternatively, some treat aces and tens as a group and add one HCP if the hand contains three or more aces and tens; Richard Pavlicek advocates adding one HCP if holding four or more aces and tens.
;For unguarded honours
Goren and others recommend deducting one HCP for a singleton king, queen, or jack.
;Alternative scale
Marty Bergen claims that with the help of computers, bridge theorists have devised a more accurate valuation of the honors as follows:
- ace = 4.5 HCP
- king = 3 HCP
- queen = 1.5 HCP
- jack = 0.75 HCP
- ten = 0.25
Bergen's “computer” scale appears to be identical to the “high card value of the Four Aces System” found on the front inside cover and on page 5 of the 1935 book, The Four Aces System of Contract Bridge by David Burnstine, Michael T. Gottlieb, Oswald Jacoby and Howard Schenken. The Four Aces' book gives the simpler 3-2-1- version of the progression. Dividing Bergen's numbers by 1.5 produces exactly the same numbers published by the Four Aces seven decades earlier:
- Bergen ace = 4.5 ÷ 1.5 = 3 Four Aces Count
- Bergen king = 3.0 ÷ 1.5 = 2 Four Aces Count
- Bergen queen = 1.5 ÷ 1.5 = 1 Four Aces Count
- Bergen jack =.75 ÷ 1.5 = ½ Four Aces Count — Q.E.D.
Distributional points
Suit length points
At its simplest it is considered that long suits have a value beyond the HCP held: this can be turned into numbers on the following scale:- 5-card suit = 1 point
- 6 card suit = 2 points
- 7 card suit = 3 points... etc.
Suit shortness points
Once a trump suit has been agreed, or at least a partial fit has been uncovered, it is argued by many that ruffing potential as represented by short suits becomes more significant than long suits. Accordingly, in a method devised by William Anderson of Toronto and popularized by Charles Goren, distribution points are added for shortage rather than length.When the supporting hand holds three trumps, shortness is valued as follows:
- void = 3 points
- singleton = 2 points
- doubleton = 1 point
- void = 5 points
- singleton = 3 points
- doubleton = 1 point
Combination Count
This method uses both lengths and shortages in all situations. The hand scores two shortage points for a void and one for a singleton, and this total is added to the usual length count: one point is added for each card in a suit beyond four.An alternative approach is to create a distributional point count of a hand to be added to HCP simply by adding the combined length of the two longest suits, subtracting the length of the shortest suit, and subtracting a further five. On this basis 4333 hands score -1 and all other shapes score a positive distributional count.
Summary
When intending to make a bid in a suit and there is no agreed upon trump suit, add high card points and length points to get the total point value of one's hand. When intending to raise an agreed trump suit, add high card points and shortness points. When making a bid in notrump with intent to play, value high-card points only.Supplementary methods
The basic point-count system does not solve all evaluation problems and in certain circumstances is supplemented by refinements to the HCP count or by additional methods.Control count
The control count is a supplementary method that is mainly used in combination with HCP count to determine the trick-taking potential of fitting hands, in particular to investigate slam potential. The use of control count addresses the fact that for suit contracts, aces and kings tend to be undervalued in the standard 4–3–2–1 HCP scale; aces and kings allow declarer better control over the hands and can prevent the opponents from retaining or gaining the lead.The control count is the sum of the controls where aces are valued as two controls, kings as one control and queens and jacks as zero. This control count can be used as "tie-breakers" for hands evaluated as marginal by their HCP count. Hands with the same shape and the same HCP can have markedly different slam potential depending on the control count.
In the above examples, both West hands are the same, and both East hands have the same shape and HCP. Yet, the layout above represents a solid slam in spades, whilst the layout below will fail to produce 12 tricks. The difference between the East hands becomes apparent when conducting a control count: in the top layout East has two aces and two kings for a total of six controls, whilst in the bottom layout has one ace and two kings for a total of four controls.
HCP | Expected Controls |
5 | 1 |
7–8 | 2 |
10 | 3 |
12–13 | 4 |
15 | 5 |
17–18 | 6 |
20 | 7 |
The table can be used as tie-breaker for estimating the slam-going potential of hands like the above two East hands. Whilst the top East hand counts 16 HCP, in terms of controls it is equivalent to a hand typically 1–2 HCP stronger, whereas the bottom East hand, also counting 16 HCP, is in terms of controls more equivalent to 12–13 HCP.
If West opens the bidding with 1, both East hands should aim for at least game, the partnership having the minimum 26 total points typically required for a game contract in the majors. Despite the spade suit fit, both East hands have marginal slam potential based on their 16 HCP count alone. On the top layout the control-rich East should explore slam and be willing to bypass 4 in doing so, whilst on the bottom layout the control-weak East should be more cautious and be prepared to stop in 4 should further bidding reveal West lacking a control in diamonds.
Having determined the degree of interest in exploring slam possibilities, the methods and conventions to determine which controls are held by the partnership include: the Blackwood convention, the Norman four notrump convention, the Roman Key Card Blackwood convention and cuebids.
In his book "The Modern Losing Trick Count", Ron Klinger advocates the use of the control count to make adjustments to the LTC hand evaluation method.
Negative/positive features
Certain combinations of cards have higher or lower trick taking potential than the simple point count methods would suggest. Proponents of this idea suggest that HCP should be deducted from hands where negative combinations occur. Similarly, additional points might be added where positive combinations occur. This method is particularly useful in making difficult decisions on marginal hands, especially for overcalling and in competitive bidding situations. In lieu of arithmetic addition or subtraction of HCP or distributional points, 'plus' or 'minus' valuations may be applied to influence the decision.Negative features worth less than the HCP suggest:
- Honour doubletons K-Q, Q-J. Q-x, J-x unless in partners suit. Although Samuel Stayman recommended deducting one HCP for K-Q, K-J, Q-J,Q-x,J-x Q-x-x, J-x-x holdings, this is now considered extreme.
- Honour singletons; some exempt the singleton ace but others consider it inflexible in play.
- Honour combinations not accompanied by a small card.
- Honours in opponents' suit when deciding to support partner's suit.
- Honours in side suits when deciding to overcall.
- The club suit when opening because it allows opponents to overcall more easily.
- The next suit above RHO's suit when overcalling which gives opponents information but does not cut into their bidding space.
- Honours in suits shown by LHO.
- Honours in long suits.
- Two or three honours in long suits.
- Honour sequences in long suits.
- Honours in partner's suit when deciding to support it.
- Honours in own suit when deciding to overcall.
- Two or three intermediate cards in a suit especially if headed by honours.
- The spade suit when opening... makes overcalling more difficult.
- The next suit below RHO's suit when overcalling reduces the opponents' bidding space.
- Honours in suits shown by RHO.
Defensive/attacking values
Defensive values that suggest a hand should defend:
- Honours in shortish side suits, e.g. Kxx.
- Honours and/or length in opponents suit.
- Lack of honours in own suit.
- Honours in own suit.
- Lack of defensive values.
Methods to help with opening bids and overcalls on marginal hands
Rule of 22
Add together the number of HCP in the hand, and the number of cards in the two longest suits, and the number of quick tricks in the hand. If the resultant number is 22 or higher, then an opening bid is suggested . In 3rd seat the requirement may be lowered to 19. Quick tricks are: AK=2, AQ=1.5, A=1, KQ=1, Kx=0.5 . This formula for evaluating opening bid strength is referred to by Ron Klinger as "Highly Cutie" : HIgh card points + LEngth count + Quick Tricks. The method attempts to improve the widely accepted 'Rule of 20' by emphasizing the importance of defensive values in a one-level opening hand, and by assigning greater value to honor cards that work together in the same suit than to honors that are split between suits.Rule of 20
Add together the number of HCP in the hand, and the number of cards in the two longest suits. If the resultant number is 20 or higher and most of the high cards are in the long suits, then an opening bid is suggested. As an example, a hand containing 11 HCP and 5–4–2–2 shape would qualify for an opening bid because the resultant number would be 20 whereas 11 HCP and 4–4–3–2 shape would not. This method gives very similar results to length points as above except for a hand containing 11 HCP and 5–3–3–2 shape which gives 19 on the Rule of 20 but 12 total points by adding 1 length point to the 11 HCP. Experience and further analysis are needed to decide which is appropriate.Rule of 19
Identical to the Rule of 20 but some expert players believe that 20 is too limiting a barrier and prefer 19.Suit Quality Test (SQT)
The SQT evaluates an individual suit as a precursor to deciding whether, and at what level, certain bids should be made. This method is generally considered useful for making an overcall and for making a preemptive opening bid; it works for long suits i.e. 5 cards at least, as follows:Add together the number of cards in the suit and the number of high cards in the suit. For this purpose high cards are considered to be A, K, Q, J and 10 but the J and 10 are only to be counted if at least one of the A, K or Q are present. The resultant number determines the level at which the particular bid should be made according to this scale:
- 7 = a one level bid
- 8 = a two level bid
- 9 = a three level bid.... etc.
This method was originally proposed as a way of enabling overcalls to be made with relatively few HCP but with little risk. It can also be used to determine whether a hand is suitable for a preemptive bid.
Methods to help when a fit has been discovered
Paraphrasing Crowhurst and Kambites, "Experts often sail into an unbeatable slam with only 25 HCP whereas it would never occur to most players to proceed beyond game".North | South |
1 | 3 |
4 | 4 |
? |
Losing-Trick Count (LTC)
Once a trump fit has been found, this alternative method is used in situations where shape and fit are of more significance than HCP in determining the optimum level of a suit contract. The "losing-tricks" in a hand are added to the systemically assumed losing tricks in partners hand and the resultant number is deducted from 24; the net figure is the number of tricks a partnership can expect to win when playing in the agreed trump suit.The basic method assumes that an ace will never be a loser, nor will a king in a 2+ card suit, nor a queen in a 3+ card suit, thus
- a void = 0 losing tricks.
- a singleton other than an A = 1 losing trick.
- a doubleton AK = 0, Ax or KQ = 1, Kx = 1, xx = 2 losing tricks.
- a three card suit AKQ = 0, AKx =, AQx = 1, KQx = 1 losing trick.
- a three card suit Axx = 1, Kxx = 2, Qxx = 2, xxx = 3 losing tricks.
- suits longer than three cards are judged according to the three highest cards; no suit may have more than 3 losing tricks.
- partner jumps to game with no more than 7 losers in hand and a fit with partner's heart suit ... 7 + 7 = 14 subtract from 24 = 10 tricks.
- With 8 losers in hand and a fit, responder bids 3.
- With 9 losers and a fit, responder bids 2.
- With only 5 losers and a fit, a slam is likely so responder may bid straight to 6 if preemptive bidding seems appropriate or take a slower forcing approach.
LTC refined
- AQ doubleton = loser according to Ron Klinger.
- Kx doubleton = 1 losers according to others.
- AQJ = loser... not one.
- KQJ = 1 loser.
- AJ10 = 1 loser according to Harrison-Gray.
- KJ10 = 1 losers according to Bernard Magee.
- QJ10 = 2 losers.
- Qxx = 3 losers unless trumps, or unless partner has bid the suit.
- Subtract a loser if there is a known 9-card trump fit.
Bernard Magee also points out that the LTC can overvalue doubletons. A hand with two doubletons will usually have more immediate losers than one with a singleton and 3 cards in the other suit. The older "shortage points" method values the second hand type higher.
New Losing Trick Count (NLTC)
Main article New Losing Trick CountExtending these thoughts, most experts agree that basic LTC undervalues Aces and overvalues Queens. In addition, many believe that worthless singletons and doubletons are generally overvalued. Recent insights on these issues have led to the New Losing Trick Count. For more precision, this method utilizes the concept of half-losers and, more important, distinguishes between 'Ace-losers', 'King-losers' and 'Queen-losers.' Considering only the three highest ranking cards in each suit:
- missing Ace = three half-losers
- missing King = two half-losers
- missing Queen = one half-loser
A typical opening bid is assumed to have 15 or fewer half-losers, or 7.5 losers, which is half a loser more compared to basic LTC. NLTC also differs from LTC in the fact that it utilises a value of 25 in determining the trick-taking potential of two partnering hands. Hence, in NLTC the expected number of tricks equates to 25 minus the sum of the losers in the two hands. So, 15 half-losers opposite 15 half-losers leads to 25-/2 = 10 tricks.
Similar to basic LTC, users may employ an alternative formula to determine the appropriate contract level. The NLTC alternative formula is 19 minus the sum of the losers in the two hands = the suggested contract level to which the partnership should bid. So, 15 half-losers opposite 15 half-losers leads to 19-/2 = 4-level contract. Players already familiar with this formula will recognize the difference between 25 and 19 as the number of tricks required by declarer to secure a "book", which is 6.
There is no evidence that this method is better than the original losing trick count.
Law of Total Tricks, Total Trumps Principle, TNT (Total Number of Trumps = Total Number of Tricks)
For shapely hands where a trump fit has been agreed, the combined length of the trump suit can be more significant than points or HCP in deciding on the level of the final contract. It is of most value in competitive bidding situations where the HCP are divided roughly equally between the partnerships.- Bridge: TNT and Competitive Bidding was probably the first major book on this topic. In the introduction the authors acknowledge Jean-René Vernes as the first writer to delve into the TNT Theory. This book and these authors are little known in North America. What a shame! They touch several aspects of TNT that are rarely mentioned by others. Chapter Four on Total Distribution is worth the price. Page 19 carries a key table that may not be printed elsewhere.
- The Law of Total Tricks states that "On every hand of bridge, the total number of tricks available is equal to, or very close to, the total number of cards in each side's longest suit". Total tricks is defined as the sum of the number of tricks available to each side if they could choose trumps.
- The Total Trumps Principle is derived from the Law of Total Tricks and argues that this is more often than not a winning strategy, "Bid to the contract equal to the number of trumps you and your partner hold in a competitive auction".
- In 2002, Anders Wirgren called the accuracy of the "law" into question, saying it works on only 40% of deals. However, Larry Cohen remains convinced it is a useful guideline, especially when adjustments are used properly. Mendelson finds that it is "accurate to within one trick on the vast majority of hands"
Methods to help with strong hands
Quick Tricks
Quick tricks are similar to, but not the same as, Honor Tricks in the Culbertson system. They are calculated suit by suit as follows:- 2 quick tricks = AK of the same suit
- 1 quick tricks = AQ in the same suit
- 1 quick trick = A
- 1 quick trick = KQ in the same suit
- quick trick = Kx
Playing Tricks
For relatively strong hands containing long suits, playing tricks are defined as the number of tricks expected, with no help from partner, given that the longest suit is trumps. Thus for long suits the ace, king and queen are counted together with all cards in excess of 3 in the suit; for short suits only clear winner combinations are counted:- A = 1, AK = 2, AKQ = 3
- KQ = 1, KQJ = 2
More advanced methods
Zar Points
This statistically derived method for evaluating Contract Bridge hands was developed by Zar Petkov. It attempts to account for many of the factors outlined above in a numerical way.Visualisation
A key differentiator between the bidding effectiveness of experts versus laymen is the use of hand visualisation during all stages of bidding.In his book The Secrets of Winning Bridge, Jeff Rubens advises to focus on just a few hands that partner might be holding, and more particularly on perfect minimum hands compatible with the bidding. This means that in order to reach an informed decision in, for example, deciding whether a hand is worth an invitation to game or slam, a player should 'visualise' the most balanced distribution with the minimum HCP partner might have with the high cards selected such that these fit precisely with your own hand. He advises that "your hand is worth an invitation to game if this perfect minimum holding for partner will make it a laydown".
Rubens gives the following example:
QJ2
A32
KQJ54
A3
Partner opens 1. A minimum hand compatible with the bidding would have no more than 12 HCP, and be relatively balanced. The hand would be perfect if partner's points were solely located in spades and diamond. So a perfect minimum would be:
AK543
654
A2
542
Such a perfect minimum would give a solid slam in spades whereas reliance on HCP would not indicate a slam possibility. This is the advantage of the 'visualisation' method.