Food coloring


Food coloring, or color additive, is any dye, pigment or substance that imparts color when it is added to food or drink. They come in many forms consisting of liquids, powders, gels, and pastes. Food coloring is used both in commercial food production and in domestic cooking. Food colorants are also used in a variety of non-food applications including cosmetics, pharmaceuticals, home craft projects, and medical devices.

Purpose of food coloring

People associate certain colors with certain flavors, and the color of food can influence the perceived flavor in anything from candy to wine. Sometimes the aim is to simulate a color that is perceived by the consumer as natural, such as adding red coloring to glacé cherries, but sometimes it is for effect, like the green ketchup that Heinz launched in 1999. Color additives are used in foods for many reasons including:
The addition of colorants to foods is thought to have occurred in Egyptian cities as early as 1500 BC, when candy makers added natural extracts and wine to improve the products' appearance. During the Middle Ages, the economy in the European countries was based on agriculture, and the peasants were accustomed to producing their own food locally or trading within the village communities. Under feudalism, aesthetic aspects were not considered, at least not by the vast majority of the generally very poor population. This situation changed with urbanization at the beginning of the Modern Age, when trade emerged—especially the import of precious spices and colors. One of the very first food laws, created in Augsburg, Germany, in 1531, concerned spices or colorants and required saffron counterfeiters to be burned.
With the onset of the industrial revolution, people became dependent on foods produced by others. These new urban dwellers demanded food at low cost. Analytical chemistry was still primitive and regulations few. The adulteration of foods flourished. Heavy metal and other inorganic element-containing compounds turned out to be cheap and suitable to "restore" the color of watered-down milk and other foodstuffs, some more lurid examples being:
Sellers at the time offered more than 80 artificial coloring agents, some invented for dyeing textiles, not foods. Many color additives had never been tested for toxicity or other adverse effects. Historical records show that injuries, even deaths, resulted from tainted colorants. In 1851, about 200 people were poisoned in England, 17 of them fatally, directly as a result of eating adulterated lozenges. In 1856, mauveine, the first synthetic color, was developed by Sir William Henry Perkin and by the turn of the century, unmonitored color additives had spread through Europe and the United States in all sorts of popular foods, including ketchup, mustard, jellies, and wine. Originally, these were dubbed 'coal-tar' colors because the starting materials were obtained from bituminous coal.
Synthetic dyes are often less costly and technically superior to natural dyes.

Regulation

History of regulation

Concerns over food safety led to numerous regulations throughout the world. German food regulations released in 1882 stipulated the exclusion of dangerous "minerals" such as arsenic, copper, chromium, lead, mercury, and zinc, which were frequently used as ingredients in colorants. In contrast to today's regulatory guidelines, these first laws followed the principle of a negative listing ; they were already driven by the main principles of today's food regulations all over the world, since all of these regulations follow the same goal: the protection of consumers from toxic substances and from fraud. In the United States, the reduced the permitted list of synthetic colors from 700 down to seven. The seven dyes initially approved were Ponceau 3R, amaranth, erythrosine, indigotine, Light Green SF, Naphthol yellow 1, and Orange 1. Even with updated food laws, adulteration continued for many years.
In the 20th century, improved chemical analysis and testing led to the replacement of the negative lists by positive listings. Positive lists consist of substances allowed to be used for the production and the improvement of foods. Most prevailing legislations are based on positive listing. Positive listing implies that substances meant for human consumption have been tested for their safety, and that they have to meet specified purity criteria prior to their approval by the corresponding authorities. In 1962, the first EU directive approved 36 colorants, of which 20 were naturally derived and 16 were synthetic. This directive did not list which food products the colorants could or could not be used in. At that time, each member state could designate where certain colors could and could not be used. In Germany, for example, quinoline yellow was allowed in puddings and desserts, but tartrazine was not. The reverse was true in France. This was updated in 1989 with , which concerned food additives authorized for use in foodstuffs.

Current regulation

While naturally derived colors are not required to be certified by a number of regulatory bodies throughout the world, they still need to be approved for use in that country. Food colorings are tested for safety by various bodies around the world and sometimes different bodies have different views on food color safety.
The U.S. FDA's permitted colors are classified as subject to certification or exempt from certification in , both of which are subject to rigorous safety standards prior to their approval and listing for use in foods.
In the United States, FD&C numbers are given to approved synthetic food dyes that do not exist in nature, while in the European Union, E numbers are used for all additives, both synthetic and natural, that are approved in food applications. The food colors are known by E numbers that begin with a 1, such as E100 or E161b. The safety of food colors and other food additives in the EU is evaluated by the European Food Safety Authority. , enacted by the European Commission in 1994, outlines permitted natural and artificial colors with their approved applications and limits in different foodstuffs. This is binding to all member countries of the EU. Any changes have to be implemented into their national laws within a given time frame. In non-EU member states, food additives are regulated by their national authorities, which usually, but not in all cases, try to harmonize with the laws adopted by the EU. Most other countries have their own regulations and list of food colors which can be used in various applications, including maximum daily intake limits.
Canadian Regulations
Food in Canada cannot be sold with more than:

E.U.

102-143 cover the range of artificial colors. For an overview of currently allowed additives see here . Some artificial dyes approved for food use in the EU include:
In the US, the following seven artificial colorings are generally permitted in food . The lakes of these colorings are also permitted except the lake of Red No. 3.
Two dyes are allowed by the FDA for limited applications:
Many dyes have been delisted for a variety of reasons, ranging from poor coloring properties to regulatory restrictions. Some of these delisted food colorants are:
As per the Food Safety and Standard Act, 2006 In India, the following eight artificial colourings are generally permitted in food.
SL No.ColourCommon NameINS No.Chemical Class
1RedPonceu 4R124Azo
Carmoisine122Azo
Erythrosine127Xanthene
2YellowTartrazine102Pyrazolone
Sunset Yellow FCF110Azo
3BlueIndigo Carmine132Indigoid
Brilliant Blue FCF133Triarylmethane
4GreenFast Green FCF143Triarylmethane

Global harmonization

Since the beginning of the 1960s, JECFA has promoted the development of international standards for food additives, not only by its toxicological assessments, which are continuously published by the WHO in a , but furthermore by elaborating appropriate purity criteria, which are laid down in the two volumes of the and their supplements. These specifications are not legally binding but very often serve as a guiding principle, especially in countries where no scientific expert committees have been established.
In order to further regulate the use of these evaluated additives, in 1962 the WHO and FAO created an international commission, the Codex Alimentarius, which is composed of authorities, food industry associations and consumer groups from all over the world. Within the Codex organization, the Codex Committee for Food Additives and Contaminants is responsible for working out recommendations for the application of food additives, the . In the light of the World Trade Organizations General Agreement on Tariffs and Trade, the Codex Standard, although not legally binding, influences food color regulations all over the world.

Natural food dyes

s, chlorophyllin, anthocyanins, and betanin comprise four main categories of plant pigments grown to color food products. Other colorants or specialized derivatives of these core groups include:
Blue colors are especially rare. One feasible blue dye currently in use is derived from spirulina. Some recent research has explored associating anthocyanins with other phenolics or aluminium ions to develop blue colours. However, the inherent problems posed by the nature of the food matrix, and the need for long‐term stability, makes this a very difficult objective. The pigment genipin, present in the fruit of Gardenia jasminoides, can be treated with amino acids to produce the blue pigment gardenia blue, which is approved for use in Japan but not the EU or the USA.
To ensure reproducibility, the colored components of these substances are often provided in highly purified form. For stability and convenience, they can be formulated in suitable carrier materials. Hexane, acetone, and other solvents break down cell walls in the fruit and vegetables and allow for maximum extraction of the coloring. Traces of these may still remain in the finished colorant, but they do not need to be declared on the product label. These solvents are known as carry-over ingredients.

Criticism and health implications

Widespread public belief that artificial food coloring causes ADHD-like hyperactivity in children originated from Benjamin Feingold, a pediatric allergist from California, who proposed in 1973 that salicylates, artificial colors, and artificial flavors cause hyperactivity in children; however, there is no evidence to support broad claims that food coloring causes food intolerance and ADHD-like behavior in children. It is possible that certain food colorings may act as a trigger in those who are genetically predisposed, but the evidence is weak.
Despite concerns expressed that food colorings may cause ADHD-like behavior in children, the collective evidence does not support this assertion. The US FDA and other food safety authorities regularly review the scientific literature, and led the UK Food Standards Agency to commission a study by researchers at Southampton University of the effect of a mixture of six food dyes on children in the general population. These colorants are found in beverages. The study found "a possible link between the consumption of these artificial colours and a sodium benzoate preservative and increased hyperactivity" in the children; the advisory committee to the FSA that evaluated the study also determined that because of study limitations, the results could not be extrapolated to the general population, and further testing was recommended. The U.S. FDA did not make changes following the publication of the Southampton study. Following a citizen petition filed by the Center for Science in the Public Interest in 2008, requesting the FDA ban several food additives, the FDA reviewed the available evidence, and still made no changes.
The European regulatory community, with an emphasis on the precautionary principle, required labelling and temporarily reduced the acceptable daily intake for the food colorings; the UK FSA called for voluntary withdrawal of the colorings by food manufacturers. However, in 2009 the EFSA re-evaluated the data at hand and determined that "the available scientific evidence does not substantiate a link between the color additives and behavioral effects" for any of the dyes.

Chemical structures of representative colorants