Colonization of the Moon


Colonization of the Moon is the proposed establishment of a permanent human community or robotic industries on the Moon, the closest astronomical body to Earth.
Discovery of water in the soil at the lunar poles by Chandrayaan-1 in 2008–09 renewed interest in the Moon, after NASA missions in the 1990's suggested the presence of lunar ice. Locating a colony at one of the lunar poles would also avoid the problem of long lunar nights—about 354 hours long, half a lunar month—and allow the colony to take advantage of the continuous sunlight there for generating solar power.
Permanent human habitation on a planetary body other than the Earth is one of science fiction's most prevalent themes. As technology has advanced, and concerns about the future of humanity on Earth have increased, the vision of space colonization as an achievable and worthwhile goal has gained momentum. Because of its proximity to Earth, the Moon is seen by many as the best and most obvious location for the first permanent human space colony. Currently, the main problem hindering the development of such a colony is the high cost of human spaceflight.
There are also several projects that have been proposed for tourism on the Moon in the near future by private space companies.

Proposals

The notion of a lunar colony originated before the Space Age. In 1638, Bishop John Wilkins wrote A Discourse Concerning a New World and Another Planet, in which he predicted a human colony on the Moon. Konstantin Tsiolkovsky, among others, also suggested such a step.
From the 1950s onwards, a number of more concrete concepts and designs have been suggested by scientists, engineers and others. In 1954, science fiction writer Arthur C. Clarke proposed a lunar base of inflatable modules covered in lunar dust for insulation. A spaceship assembled in low Earth orbit would launch to the Moon, and astronauts would set up the igloo-like modules and an inflatable radio mast. Subsequent steps would include the establishment of a larger, permanent dome; an algae-based air purifier; a nuclear reactor for the provision of power; and electromagnetic cannons to launch cargo and fuel to interplanetary vessels in space.
In 1959, John S. Rinehart suggested that the safest design would be a structure that could " in a stationary ocean of dust", since there were, at the time this concept was outlined, theories that there could be mile-deep dust oceans on the Moon. The proposed design consisted of a half-cylinder with half-domes at both ends, with a micrometeoroid shield placed above the base.

NASA

The United States space administration NASA has requested an increase in the 2020 budget of $1.6 billion, in order to make another crewed mission to the Moon by 2024, followed by a sustained presence on the Moon by 2028. NASA is ready to announce plans to bring together a Commercial Human Lander Awards for Artemis Missions on the Moon. This specific program, “The Artemis Program,” encompasses NASA’s overview for lunar exploration plans. This announcement will go over the first in a series of many more to come complex missions. Artemis I will start off as an un-crewed flight test to demonstrate the capabilities of NASA’s Space Launch System rocket and Orion spacecraft. The first flight with a crew will be Artemis II, closely followed by Artemis III that will actually land crew on the moon by the end of 2024 using a new commercially-procured Human Landing System. They hope to develop a sustainable lunar exploration program starting from 2028.

Project Horizon

Project Horizon was a 1959 study regarding the United States Army's plan to establish a fort on the Moon by 1967. Heinz-Hermann Koelle, a German rocket engineer of the Army Ballistic Missile Agency led the Project Horizon study. It was proposed that the first landing would be carried out by two "soldier-astronauts" in 1965 and that more construction workers would soon follow. It was posited that through numerous launches, 245 tons of cargo could be transported to the outpost by 1966.

Lunex Project

Lunex Project was a US Air Force plan for a crewed lunar landing prior to the Apollo Program in 1961. It envisaged a 21-person underground Air Force base on the Moon by 1968 at a total cost of $7.5 billion.

Sub-surface base

In 1962, John DeNike and Stanley Zahn published their idea of a sub-surface base located at the Sea of Tranquility. This base would house a crew of 21, in modules placed four meters below the surface, which was believed to provide radiation shielding on par with Earth's atmosphere. DeNike and Zahn favored nuclear reactors for energy production, because they were more efficient than solar panels, and would also overcome the problems with the long lunar nights. For the life support system, an algae-based gas exchanger was proposed.

Zvezda

Zvezda moonbase was a Soviet plan and project from 1962 to 1974 to construct a crewed moonbase as successor to the N1-L3 crewed lunar expedition program.
The project was ordered by the Soviet space chief Korolyov to Barmin's Spetcmash bureau. The project was named DLB Lunar Base in technical specifications and Zvezda in government documents. Unofficially, the project was called Barmingrad by its designers.
The realization of the project depended on key parts of the N1-L3 program - the N-1 superheavy launcher, all 4 launches of which failed between 1969 and 1972. Zvezda moonbase was canceled with the rest of the Soviet human lunar programs. All crewed Soviet lunar programs, including a Zvezda moonbase, had been classified as top secret and were only published in the glasnost epoch since 1990.

Moon Village

The Moon Village concept was presented in 2015. 'Village' in this context refers to international public and private investors, scientists, engineers, universities, and businessmen coming together to discuss interests and capabilities to build and share infrastructure on the Moon and in cislunar space for a variety of purposes. It is neither an ESA project nor a program, but being organized, loosely, by a nonprofit organization seeking to give a platform for an open international architecture and collaboration. In other words, Moon Village seeks to create a vision where both international cooperation and the commercialization of space can thrive.
The open nature of the concept would encompass any kind of lunar activities, whether robotic or astronauts, 3D printed habitats, refueling stations, relay orbiters, astronomy, exploiting resources, or even tourism. The idea is to achieve at least some degree of coordination and exploitation of potential synergies and to create a permanent sustainable presence on the surface of the Moon, whether robotic or crewed. Jan Wörner, ESA Director General, describes the Village simply as "an understanding, not a single facility". This initiative is meant as the first step in coming together as a species and develop the partnerships and "know how" before attempting to do the same on Mars. The Director General of ESA, Jan Wörner, states that this vision of synergy can be as inspiring as the International Space Station but on a truly global, international-cooperation basis, and he proposes this approach as a replacement for the orbiting International Space Station, which is due to be decommissioned in 2024.
China has expressed interest, and NASA has also expressed interest in the potential synergy it offers to the proposed Lunar Gateway. The private aerospace company Blue Origin has also expressed early interest and offered to develop a cargo lander with a capacity of usable payload. Astronaut Buzz Aldrin has long urged his fellow Americans to cooperate with international partners to reach the Moon.
While Woerner is the most famous advocate for Moon Village, it is not an ESA program. Instead, the concept is being organized, loosely, by a nonprofit organization established in November 2017 called the Moon Village Association. It is a non-profit organization, registered in Vienna, with the mission to create a global forum for the development of the Moon Village, and to potentially implement a permanent human settlement near the lunar south pole, taking advantage of near-continuous sunlight and nearby deposits of ice and other useful volatiles.

Other proposals

In 2007, Jim Burke, of the International Space University in France, said people should plan to preserve humanity's culture in the event of a civilization-stopping asteroid impact with Earth. A Lunar Noah's Ark was proposed. Subsequent planning may be taken up by the International Lunar Exploration Working Group.

Moon exploration

Exploration through 2019

Exploration of the lunar surface by spacecraft began in 1959 with the Soviet Union's Luna program. Luna 1 missed the Moon, but Luna 2 made a hard landing into its surface, and became the first artificial object on an extraterrestrial body. The same year, the Luna 3 mission radioed photographs to Earth of the Moon's hitherto unseen far side, marking the beginning of a decade-long series of robotic lunar explorations.
Responding to the Soviet program of space exploration, US President John F. Kennedy in 1961 told the US Congress on May 25: "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the Moon and returning him safely to the Earth." The same year the Soviet leadership made some of its first public pronouncements about landing a man on the Moon and establishing a lunar base.
Crewed exploration of the lunar surface began in 1968 when the Apollo 8 spacecraft orbited the Moon with three astronauts on board. This was mankind's first direct view of the far side. The following year, the Apollo 11 Apollo Lunar Module landed two astronauts on the Moon, proving the ability of humans to travel to the Moon, perform scientific research work there, and bring back sample materials.
Additional missions to the Moon continued this exploration phase. In 1969, the Apollo 12 mission landed next to the Surveyor 3 spacecraft, demonstrating precision landing capability. The use of a crewed vehicle on the Moon's surface was demonstrated in 1971 with the Lunar Roving Vehicle during Apollo 15. Apollo 16 made the first landing within the rugged lunar highlands. However, interest in further exploration of the Moon was beginning to wane among the American public. In 1972, Apollo 17 was the final Apollo lunar mission, and further planned missions were scrapped at the directive of President Nixon. Instead, focus was turned to the Space Shuttle and crewed missions in near Earth orbit.
In addition to its scientific returns, the Apollo program also provided valuable lessons about living and working in the lunar environment.
The Soviet crewed lunar programs failed to send a crewed mission to the Moon. However, in 1966 Luna 9 was the first probe to achieve a soft landing and return close-up shots of the lunar surface. Luna 16 in 1970 returned the first Soviet lunar soil samples, while in 1970 and 1973 during the Lunokhod program two robotic rovers landed on the Moon. Lunokhod 1 explored the lunar surface for 322 days, and Lunokhod 2 operated on the Moon about four months only but covered a third more distance. 1974 saw the end of the Soviet Moonshot, two years after the last American crewed landing. Besides the crewed landings, an abandoned Soviet Moon program included building the moonbase "Zvezda", which was the first detailed project with developed mockups of expedition vehicles and surface modules.
In the decades following, interest in exploring the Moon faded considerably, and only a few dedicated enthusiasts supported a return. However, evidence of lunar ice at the poles gathered by NASA's Clementine and Lunar Prospector missions rekindled some discussion, as did the potential growth of a Chinese space program that contemplated its own mission to the Moon. Subsequent research suggested that there was far less ice present than had originally been thought, but that there may still be some usable deposits of hydrogen in other forms. However, in September 2009, the Chandrayaan probe of India, carrying an ISRO instrument, discovered that the lunar soil contains 0.1% water by weight, overturning hypotheses that had stood for 40 years.
In 2004, US President George W. Bush called for a plan to return crewed missions to the Moon by 2020. On June 18, 2009, NASA's LCROSS/LRO mission to the Moon was launched. The LCROSS mission was designed to acquire research information to assist with future lunar exploratory missions and was scheduled to conclude with a controlled collision of the craft on the lunar surface. LCROSS's mission concluded as scheduled with its controlled impact on October 9, 2009.
In 2010, due to reduced congressional NASA appropriations, President Barack Obama halted the Bush administration's earlier lunar exploration initiative and directed a generic focus on crewed missions to asteroids and Mars, as well as extending support for the International Space Station.
In 2019 President Trump had called for a crewed Moon mission in 2024 to be the focus of NASA instead of 2028 as in the original timetable. A plan for a 2024 landing was submitted to Congress August 2019 but has failed to get funding and plans agreed.

Planned crewed lunar missions 2021–36

Japan has plans to land a man on the Moon by 2030, while the People's Republic of China is currently planning to land a human on the Moon by 2036.

United States

Billionaire Jeff Bezos has outlined his plans for a lunar base in the 2020s Independently, SpaceX plans to send Starship to the Moon to establish a base.
In March 2019 NASA unveiled the Artemis program's mission to send a crewed mission to the Moon by 2024, in response to a directive by President Trump, along with plans to establish an outpost in 2028. However, existing plans delay the proposed mission to 2028 with a base established in the 2030s.

Global organizations

In August 2019, the Open Lunar Foundation came out of stealth with an explicit plan to develop a collaborative and global open group to allow denizens of all nations to participate in building a peaceful and cooperative lunar settlement. The effort got underway in early 2018 when a group of Silicon Valley entrepreneurs came together after realizing that significantly-reduced launch costs of private companies could make possible a lunar settlement that might be instantiated with an investment of "single-digit billions", perhaps. Founders include Steve Jurvetson, Will Marshall, Chelsea Robinson, Jessy Kate Schingler, Chris Hadfield, and Pete Worden. Initial funding for Open Lunar was.

Lunar water ice

On September 24, 2009, Science magazine reported that the Moon Mineralogy Mapper on the Indian Space Research Organization's Chandrayaan-1 had detected water on the Moon. M3 detected absorption features near on the surface of the Moon. For silicate bodies, such features are typically attributed to hydroxyl- and/or water-bearing materials. On the Moon, the feature is seen as a widely distributed absorption that appears strongest at cooler high latitudes and at several fresh feldspathic craters. The general lack of correlation of this feature in sunlit M3 data with neutron spectrometer H abundance data suggests that the formation and retention of OH and H2O is an ongoing surficial process. OH/H2O production processes may feed polar cold traps and make the lunar regolith a candidate source of volatiles for human exploration.
The Moon Mineralogy Mapper, an imaging spectrometer, was one of the 11 instruments on board Chandrayaan-1, whose mission came to a premature end on 29 August 2009. M3 was aimed at providing the first mineral map of the entire lunar surface.
Lunar scientists had discussed the possibility of water repositories for decades. They are now increasingly "confident that the decades-long debate is over" a report says. "The Moon, in fact, has water in all sorts of places; not just locked up in minerals, but scattered throughout the broken-up surface, and, potentially, in blocks or sheets of ice at depth." The results from the Chandrayaan mission are also "offering a wide array of watery signals."
On November 13, 2009, NASA announced that the LCROSS mission had discovered large quantities of water ice on the Moon around the LCROSS impact site at Cabeus. Robert Zubrin, president of the Mars Society, relativized the term 'large': "The 30 m crater ejected by the probe contained 10 million kilograms of regolith. Within this ejecta, an estimated 100 kg of water was detected. That represents a proportion of ten parts per million, which is a lower water concentration than that found in the soil of the driest deserts of the Earth. In contrast, we have found continent sized regions on Mars, which are 600,000 parts per million, or 60% water by weight." Although the Moon is very dry on the whole, the spot where the LCROSS impactor hit was chosen for a high concentration of water ice. Dr. Zubrin's computations are not a sound basis for estimating the percentage of water in the regolith at that site. Researchers with expertise in that area estimated that the regolith at the impact site contained 5.6 ± 2.9% water ice, and also noted the presence of other volatile substances. Hydrocarbons, material containing sulfur, carbon dioxide, carbon monoxide, methane and ammonia were present.
In March 2010, ISRO reported that the findings of its mini-SAR radar aboard Chandrayaan-1 were consistent with ice deposits at the Moon's north pole. It is estimated there is at least 600 million tons of ice at the north pole in sheets of relatively pure ice at least a couple of meters thick.
In March 2014, researchers who had previously published reports on possible abundance of water on the Moon, reported new findings that refined their predictions substantially lower.
In 2018, it was announced that M3 infrared data from Chandrayaan-1 had been re-analyzed to confirm the existence of water across wide expanses of the Moon's polar regions.
The Chinese lander Chang'e 4 and its rover Yutu 2 are on the lunar surface on the far side of the Moon in the South Pole-Aitken Basin, analyzing the lunar surface to assist in the search for water.

Advantages and disadvantages

Placing a colony on a natural body would provide an ample source of material for construction and other uses in space, including shielding from cosmic radiation. The energy required to send objects from the Moon to space is much less than from Earth to space. This could allow the Moon to serve as a source of construction materials within cis-lunar space. Rockets launched from the Moon would require less locally produced propellant than rockets launched from Earth. Some proposals include using electric acceleration devices to propel objects off the Moon without building rockets. Others have proposed momentum exchange tethers. Furthermore, the Moon does have some gravity, which experience to date indicates may be vital for fetal development and long-term human health. Whether the Moon's gravity is adequate for this purpose, however, is uncertain.
In addition, the Moon is the closest large body in the Solar System to Earth. While some Earth-crosser asteroids occasionally pass closer, the Moon's distance is consistently within a small range close to 384,400 km. This proximity has several advantages:
There are several disadvantages to the Moon as a colony site:
Soviet astronomer Vladislav V. Shevchenko proposed in 1988 the following three criteria that a lunar outpost should meet:
While a colony might be located anywhere, potential locations for a lunar colony fall into three broad categories.

Polar regions

There are two reasons why the north pole and south pole of the Moon might be attractive locations for a human colony. First, there is evidence for the presence of water in some continuously shaded areas near the poles. Second, the Moon's axis of rotation is sufficiently close to being perpendicular to the ecliptic plane that the radius of the Moon's polar circles is less than 50 km. Power collection stations could therefore be plausibly located so that at least one is exposed to sunlight at all times, thus making it possible to power polar colonies almost exclusively with solar energy. Solar power would be unavailable only during a lunar eclipse, but these events are relatively brief and absolutely predictable. Any such colony would therefore require a reserve energy supply that could temporarily sustain a colony during lunar eclipses or in the event of any incident or malfunction affecting solar power collection. Hydrogen fuel cells would be ideal for this purpose, since the hydrogen needed could be sourced locally using the Moon's polar water and surplus solar power. Moreover, due to the Moon's uneven surface some sites have nearly continuous sunlight. For example, Malapert mountain, located near the Shackleton crater at the lunar south pole, offers several advantages as a site:
NASA chose to use a south-polar site for the lunar outpost reference design in the Exploration Systems Architecture Study chapter on lunar architecture.
At the north pole, the rim of Peary Crater has been proposed as a favorable location for a base. Examination of images from the Clementine mission in 1994 appear to show that parts of the crater rim are permanently illuminated by sunlight. As a result, the temperature conditions are expected to remain very stable at this location, averaging. This is comparable to winter conditions in Earth's Poles of Cold in Siberia and Antarctica. The interior of Peary Crater may also harbor hydrogen deposits.
A 1994 bistatic radar experiment performed during the Clementine mission suggested the presence of water ice around the south pole. The Lunar Prospector spacecraft reported in 2008 enhanced hydrogen abundances at the south pole and even more at the north pole. On the other hand, results reported using the Arecibo radio telescope have been interpreted by some to indicate that the anomalous Clementine radar signatures are not indicative of ice, but surface roughness. This interpretation, however, is not universally agreed upon.
A potential limitation of the polar regions is that the inflow of solar wind can create an electrical charge on the leeward side of crater rims. The resulting voltage difference can affect electrical equipment, change surface chemistry, erode surfaces and levitate lunar dust.

Equatorial regions

The lunar equatorial regions are likely to have higher concentrations of helium-3 because the solar wind has a higher angle of incidence. They also enjoy an advantage in extra-Lunar traffic: The rotation advantage for launching material is slight due to the Moon's slow rotation, but the corresponding orbit coincides with the ecliptic, nearly coincides with the lunar orbit around Earth, and nearly coincides with the equatorial plane of Earth.
Several probes have landed in the Oceanus Procellarum area. There are many areas and features that could be subject to long-term study, such as the Reiner Gamma anomaly and the dark-floored Grimaldi crater.

Far side

The lunar far side lacks direct communication with Earth, though a communication satellite at the Lagrangian point, or a network of orbiting satellites, could enable communication between the far side of the Moon and Earth. The far side is also a good location for a large radio telescope because it is well shielded from the Earth. Due to the lack of atmosphere, the location is also suitable for an array of optical telescopes, similar to the Very Large Telescope in Chile.
Scientists have estimated that the highest concentrations of helium-3 can be found in the maria on the far side, as well as near side areas containing concentrations of the titanium-based mineral ilmenite. On the near side the Earth and its magnetic field partially shields the surface from the solar wind during each orbit. But the far side is fully exposed, and thus should receive a somewhat greater proportion of the ion stream.

Lunar lava tubes

s are a potential location for constructing a lunar base. Any intact lava tube on the Moon could serve as a shelter from the severe environment of the lunar surface, with its frequent meteorite impacts, high-energy ultra-violet radiation and energetic particles, and extreme diurnal temperature variations. Lava tubes provide ideal positions for shelter because of their access to nearby resources. They also have proven themselves to be reliable structures, having withstood the test of time for billions of years.
An underground colony would escape the extreme temperatures on the Moon's surface. The day period has an average temperature of about, although it can rise as high as. The night period has an average temperature of about. Underground, both day and night periods would be around, and humans could install ordinary heaters for warmth.
One such lava tube was discovered in early 2009.

Structure

Habitat

There have been numerous proposals regarding habitat modules. The designs have evolved throughout the years as humankind's knowledge about the Moon has grown, and as the technological possibilities have changed. The proposed habitats range from the actual spacecraft landers or their used fuel tanks, to inflatable modules of various shapes. Some hazards of the lunar environment such as sharp temperature shifts, lack of atmosphere or magnetic field and long nights, were unknown early on. Proposals have shifted as these hazards were recognized and taken into consideration.

Underground colonies

Some suggest building the lunar colony underground, which would give protection from radiation and micrometeoroids. This would also greatly reduce the risk of air leakage, as the colony would be fully sealed from the outside except for a few exits to the surface.
The construction of an underground base would probably be more complex; one of the first machines from Earth might be a remote-controlled excavating machine. Once created, some sort of hardening would be necessary to avoid collapse, possibly a spray-on concrete-like substance made from available materials. A more porous insulating material also made in-situ could then be applied. Rowley & Neudecker have suggested "melt-as-you-go" machines that would leave glassy internal surfaces. Mining methods such as the room and pillar might also be used. Inflatable self-sealing fabric habitats might then be put in place to retain air. Eventually an underground city can be constructed. Farms set up underground would need artificial sunlight. As an alternative to excavating, a lava tube could be covered and insulated, thus solving the problem of radiation exposure.
An alternative solution is studied in Europe by students to excavate a habitat in the ice-filled craters of the Moon.

Surface colonies

A possibly easier solution would be to build the lunar base on the surface, and cover the modules with lunar soil. The lunar soil is composed of a unique blend of silica and iron-containing compounds that may be fused into a glass-like solid using microwave energy. Blacic has studied the mechanical properties of lunar glass and has shown that it is a promising material for making rigid structures, if coated with metal to keep moisture out. This may allow for the use of "lunar bricks" in structural designs, or the vitrification of loose dirt to form a hard, ceramic crust.
A lunar base built on the surface would need to be protected by improved radiation and micrometeoroid shielding. Building the lunar base inside a deep crater would provide at least partial shielding against radiation and micrometeoroids.
Artificial magnetic fields have been proposed as a means to provide radiation shielding for long range deep space crewed missions, and it might be possible to use similar technology on a lunar colony. Some regions on the Moon possess strong local magnetic fields that might partially mitigate exposure to charged solar and galactic particles.
In a turn from the usual engineer-designed lunar habitats, London-based Foster + Partners architectural firm proposed a building construction 3D-printer technology in January 2013 that would use lunar regolith raw materials to produce lunar building structures while using enclosed inflatable habitats for housing the human occupants inside the hard-shell lunar structures. Overall, these habitats would require only ten percent of the structure mass to be transported from Earth, while using local lunar materials for the other 90 percent of the structure mass.
"Printed" lunar soil would provide both "radiation and temperature insulation. Inside, a lightweight pressurized inflatable with the same dome shape would be the living environment for the first human Moon settlers."
The building technology would include mixing lunar material with magnesium oxide, which would turn the "moonstuff into a pulp that can be sprayed to form the block" when a binding salt is applied that "converts material into a stone-like solid."
Terrestrial versions of this 3D-printing building technology are already printing of building material per hour with the next-generation printers capable of per hour, sufficient to complete a building in a week.

Moon Capital

In 2010, The Moon Capital Competition offered a prize for a design of a lunar habitat intended to be an underground international commercial center capable of supporting a residential staff of 60 people and their families. The Moon Capital is intended to be self-sufficient with respect to food and other material required for life support. Prize money was provided primarily by the Boston Society of Architects, Google Lunar X Prize and The New England Council of the American Institute of Aeronautics and Astronautics.

3D-printed structures

On January 31, 2013, the ESA working with Foster + Partners, tested a 3D-printed structure that could be constructed of lunar regolith for use as a Moon base.

Energy

Nuclear power

A nuclear fission reactor might fulfill most of a Moon base's power requirements. With the help of fission reactors, one could overcome the difficulty of the 354 hour lunar night. According to NASA, a nuclear fission power station could generate a steady 40 kilowatts, equivalent to the demand of about eight houses on Earth. An artist's concept of such a station published by NASA envisages the reactor being buried below the Moon's surface to shield it from its surroundings; out from a tower-like generator part reaching above the surface over the reactor, radiators would extend into space to send away any heat energy that may be left over.
Radioisotope thermoelectric generators could be used as backup and emergency power sources for solar powered colonies.
One specific development program in the 2000s was the Fission Surface Power project of NASA and DOE, a fission power system focused on "developing and demonstrating a nominal 40 kWe power system to support human exploration missions. The FSP system concept uses conventional low-temperature stainless steel, liquid metal-cooled reactor technology coupled with Stirling power conversion.", significant component hardware testing had been successfully completed, and a non-nuclear system demonstration test was being fabricated.

In 2017 NASA started the Kilopower project that tested the KRUSTY reactor. Japan has the RAPID-L conceptual design.
Helium-3 mining could be used to provide a substitute for tritium for potential production of fusion power in the future.

Solar energy

Solar energy is a possible source of power for a lunar base. Many of the raw materials needed for solar panel production can be extracted on site. However, the long lunar night is a drawback for solar power on the Moon's surface. This might be solved by building several power plants, so that at least one of them is always in daylight. Another possibility would be to build such a power plant where there is constant or near-constant sunlight, such as at the Malapert mountain near the lunar south pole, or on the rim of Peary crater near the north pole. Since lunar regolith contains structural metals like iron and aluminum, solar panels could be mounted high up on locally-built towers that might rotate to follow the Sun. A third possibility would be to leave the panels in orbit, and beam the power down as microwaves.
The solar energy converters need not be silicon solar panels. It may be more advantageous to use the larger temperature difference between Sun and shade to run heat engine generators. Concentrated sunlight could also be relayed via mirrors and used in Stirling engines or solar trough generators, or it could be used directly for lighting, agriculture and process heat. The focused heat might also be employed in materials processing to extract various elements from lunar surface materials.

Energy storage

Fuel cells on the Space Shuttle have operated reliably for up to 17 Earth days at a time. On the Moon, they would only be needed for 354 hours – the length of the lunar night. Fuel cells produce water directly as a waste product. Current fuel cell technology is more advanced than the Shuttle's cells – PEM cells produce considerably less heat and are lighter, not to mention the reduced mass of the smaller heat-dissipating radiators. This makes PEMs more economical to launch from Earth than the shuttle's cells. PEMs have not yet been proven in space.
Combining fuel cells with electrolysis would provide a "perpetual" source of electricity – solar energy could be used to provide power during the lunar day, and fuel cells at night. During the lunar day, solar energy would also be used to electrolyze the water created in the fuel cells – although there would be small losses of gases that would have to be replaced.
Even if lunar colonies could provide themselves access to a near-continuous source of solar energy, they would still need to maintain fuel cells or an alternate energy storage system to sustain themselves during lunar eclipses and emergency situations.

Transport

Earth to Moon

Conventional rockets have been used for most lunar explorations to date. The ESA's SMART-1 mission from 2003 to 2006 used conventional chemical rockets to reach orbit and Hall effect thrusters to arrive at the Moon in 13 months. NASA would have used chemical rockets on its Ares V booster and Altair lander, that were being developed for a planned return to the Moon around 2019, but this was cancelled. The construction workers, location finders, and other astronauts vital to building, would have been taken four at a time in NASA's Orion spacecraft.
Proposed concepts of Earth-Moon transportation are Space elevators.

On the surface

Lunar colonists would need the ability to transport cargo and people to and from modules and spacecraft, and to carry out scientific study of a larger area of the lunar surface for long periods of time. Proposed concepts include a variety of vehicle designs, from small open rovers to large pressurized modules with lab equipment, such as the Toyota rover concept.
Rovers could be useful if the terrain is not too steep or hilly. The only rovers to have operated on the surface of the Moon are the three Apollo Lunar Roving Vehicles, developed by Boeing, the two robotic Soviet Lunokhods and the Chinese Yutu rover in 2013. The LRV was an open rover for a crew of two, and a range of 92 km during one lunar day. One NASA study resulted in the Mobile Lunar Laboratory concept, a crewed pressurized rover for a crew of two, with a range of 396 km. The Soviet Union developed different rover concepts in the Lunokhod series and the L5 for possible use on future crewed missions to the Moon or Mars. These rover designs were all pressurized for longer sorties.
If multiple bases were established on the lunar surface, they could be linked together by permanent railway systems. Both conventional and magnetic levitation systems have been proposed for the transport lines. Mag-Lev systems are particularly attractive as there is no atmosphere on the surface to slow down the train, so the vehicles could achieve velocities comparable to aircraft on the Earth. One significant difference with lunar trains, however, is that the cars would need to be individually sealed and possess their own life support systems.
For difficult areas, a flying vehicle may be more suitable. Bell Aerosystems proposed their design for the Lunar Flying Vehicle as part of a study for NASA, while Bell proposed the Manned Flying System, a similar concept.

Surface to space

Launch technology

Experience so far indicates that launching human beings into space is much more expensive than launching cargo.
One way to get materials and products from the Moon to an interplanetary way station might be with a mass driver, a magnetically accelerated projectile launcher. Cargo would be picked up from orbit or an Earth-Moon Lagrangian point by a shuttle craft using ion propulsion, solar sails or other means and delivered to Earth orbit or other destinations such as near-Earth asteroids, Mars or other planets, perhaps using the Interplanetary Transport Network.
A lunar space elevator could transport people, raw materials and products to and from an orbital station at Lagrangian points or. Chemical rockets would take a payload from Earth to the L1 lunar Lagrange location. From there a tether would slowly lower the payload to a soft landing on the lunar surface.
Other possibilities include a momentum exchange tether system.

Launch costs

A cislunar transport system has been proposed using tethers to achieve momentum exchange. This system requires zero net energy input, and could not only retrieve payloads from the lunar surface and transport them to Earth, but could also soft land payloads on to the lunar surface.

Economic development

For long-term sustainability, a space colony should be close to self-sufficient. Mining and refining the Moon's materials on-site – for use both on the Moon and elsewhere in the Solar System – could provide an advantage over deliveries from Earth, as they can be launched into space at a much lower energy cost than from Earth. It is possible that large amounts of cargo would need to be launched into space for interplanetary exploration in the 21st century, and the lower cost of providing goods from the Moon might be attractive.

Space-based materials processing

In the long term, the Moon will likely play an important role in supplying space-based construction facilities with raw materials. Zero gravity in space allows for the processing of materials in ways impossible or difficult on Earth, such as "foaming" metals, where a gas is injected into a molten metal, and then the metal is annealed slowly. On Earth, the gas bubbles rise and burst, but in a zero gravity environment, that does not happen. The annealing process requires large amounts of energy, as a material is kept very hot for an extended period of time.

Exporting material to Earth

Exporting material to Earth in trade from the Moon is more problematic due to the cost of transportation, which would vary greatly if the Moon is industrially developed. One suggested trade commodity is helium-3 which is carried by the solar wind and accumulated on the Moon's surface over billions of years, but occurs only rarely on Earth. Helium-3 might be present in the lunar regolith in quantities of 0.01 ppm to 0.05 ppm. In 2006 it had a market price of about $1,500 per gram, more than 120 times the value per unit weight of gold and over eight times the value of rhodium.
In the future 3He harvested from the Moon may have a role as a fuel in thermonuclear fusion reactors. It should require about of helium-3 to produce the electricity that Earth uses in a year and there should be enough on the Moon to provide that much for 10,000 years.

Exporting propellant obtained from lunar water

To reduce the cost of transport, the Moon could store propellants produced from lunar water at one or several depots between the Earth and the Moon, to resupply rockets or satellites in Earth orbit. The Shackleton Energy Company estimate investment in this infrastructure could cost around $25 billion.

Solar power satellites

, noting the problem of high launch costs in the early 1970s, came up with the idea of building Solar Power Satellites in orbit with materials from the Moon. Launch costs from the Moon would vary greatly if the Moon is industrially developed. This proposal was based on the contemporary estimates of future launch costs of the Space Shuttle.
On 30 April 1979 the Final Report "Lunar Resources Utilization for Space Construction" by General Dynamics Convair Division under NASA contract NAS9-15560 concluded that use of lunar resources would be cheaper than terrestrial materials for a system comprising as few as thirty Solar Power Satellites of 10 GW capacity each.
In 1980, when it became obvious NASA's launch cost estimates for the Space Shuttle were grossly optimistic, O'Neill et al. published another route to manufacturing using lunar materials with much lower startup costs. This 1980s SPS concept relied less on human presence in space and more on partially self-replicating systems on the lunar surface under telepresence control of workers stationed on Earth.