Weak topology


In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space.
The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual.
The remainder of this article will deal with this case, which is one of the concepts of functional analysis.
One may call subsets of a topological vector space weakly closed if they are closed with respect to the weak topology.
Likewise, functions are sometimes called weakly continuous if they are continuous with respect to the weak topology.

History

Starting in the early 1900s, David Hilbert and Marcel Riesz made extensive use of weak convergence.
The early pioneers of functional analysis did not elevate norm convergence above weak convergence and often times viewed weak convergence as preferable.
In 1929, Banach introduced weak convergence for normed spaces and also introduced the analogous weak-* convergence.
The weak topology is also called topologie faible and schwache Topologie.

The weak and strong topologies

Let be a topological field, namely a field with a topology such that addition, multiplication, and division are continuous.
In most applications will be either the field of complex numbers or the field of real numbers with the familiar topologies.

Weak topology with respect to a pairing

Both the weak topology and the weak* topology are special cases of a more general construction for pairings, which we now describe.
The benefit of this more general construction is that any definition or result proved for it applies to both the weak topology and the weak* topology, thereby making redundant the need for many definitions, theorem statements, and proofs.
This is also the reason why the weak* topology is also frequently referred to as the "weak topology";
because it is just an instance of the weak topology in the setting of this more general construction.
Suppose that is a pairing of vector spaces over a topological field .
The weak topology on is now automatically defined as described in the article Dual system.
However, for clarity, we now repeat it.
If the field has an absolute value, then the weak topology on is induced by the family of seminorms,, defined by
for all and.
This shows that weak topologies are locally convex.

Canonical duality

We now consider the special case where is a vector subspace of the algebraic dual space of .
There is a pairing, denoted by or, call the canonical pairing whose bilinear map is the canonical evaluation map, defined by for all and.
Note in particular that is just another way of denoting i.e..
In this case, the weak topology on , denoted by is the weak topology on with respect to the canonical pairing.
The topology is the initial topology of with respect to.
If is a vector space of linear functionals on, then the continuous dual of with respect to the topology is precisely equal to.

The weak and weak* topologies

Let be a topological vector space over, that is, is a vector space equipped with a topology so that vector addition and scalar multiplication are continuous.
We call the topology that starts with the original, starting, or given topology.
We may define a possibly different topology on using the topological or continuous dual space, which consists of all linear functionals from into the base field that are continuous with respect to the given topology.
Recall that is the canonical evaluation map defined by for all and, where in particular,.
We give alternative definitions below.

Weak topology induced by the continuous dual space

Alternatively, the weak topology on a TVS is the initial topology with respect to the family.
In other words, it is the coarsest topology on X such that each element of remains a continuous function.
A subbase for the weak topology is the collection of sets of the form where and is an open subset of the base field.
In other words, a subset of is open in the weak topology if and only if it can be written as a union of sets, each of which is an intersection of finitely many sets of the form.
From this point of view, the weak topology is the coarsest polar topology; see weak topology for details.

Weak convergence

The weak topology is characterized by the following condition: a net in converges in the weak topology to the element of if and only if converges to in or for all .
In particular, if is a sequence in, then converges weakly to if
as for all.
In this case, it is customary to write
or, sometimes,

Other properties

If is equipped with the weak topology, then addition and scalar multiplication remain continuous operations, and is a locally convex topological vector space.
If is a normed space, then the dual space is itself a normed vector space by using the norm ǁφǁ = supǁxǁ ≤ 1|φ|.
This norm gives rise to a topology, called the strong topology, on X*.
This is the topology of uniform convergence.
The uniform and strong topologies are generally different for other spaces of linear maps; see below.

Weak-* topology

The weak* topology is an important example of a polar topology.
A space can be embedded into its double dual X** by
where
Thus is an injective linear mapping, though not necessarily surjective.
The weak-* topology on X* is the weak topology induced by the image of T: TX**.
In other words, it is the coarsest topology such that the maps Tx, defined by Tx = φ from X* to the base field or remain continuous.
;Weak-* convergence
A net in X* is convergent to in the weak-* topology if it converges pointwise:
for all.
In particular, a sequence of ∈ X* converges to provided that
for all.
In this case, one writes
as.
Weak-* convergence is sometimes called the simple convergence or the pointwise convergence.
Indeed, it coincides with the pointwise convergence of linear functionals.

Properties

If is a separable locally convex space and H is a subset of its continuous dual space, then H endowed with the weak* topology is a metrizable topological space.
If is a separable metrizable locally convex space then the weak* topology on the continuous dual space of is separable.
;Properties on normed spaces
By definition, the weak* topology is weaker than the weak topology on X*.
An important fact about the weak* topology is the Banach–Alaoglu theorem: if is normed, then the closed unit ball in X* is weak*-compact.
Moreover, the closed unit ball in a normed space is compact in the weak topology if and only if is reflexive.
In more generality, let be locally compact valued field.
Let be a normed topological vector space over, compatible with the absolute value in.
Then in *, the topological dual space of continuous -valued linear functionals on, all norm-closed balls are compact in the weak-* topology.
If is a normed space, then a subset of the continuous dual is weak* compact if and only if it is weak* closed and norm-bounded.
This implies, in particular, the when is an infinite-dimensional normed space then the closed unit ball at the origin in the dual space of does not contain any weak* neighborhood of 0.
If is a normed space, then is separable if and only if the weak-* topology on the closed unit ball of X*, in which case the weak* topology is metrizable on every the norm-bounded subsets of X*.
If a normed space has a dual space that is separable then is necessarily separable.
If is a Banach space, the weak-* topology is not metrizable on all of X* unless is finite-dimensional.

Examples

Hilbert spaces

Consider, for example, the difference between strong and weak convergence of functions in the Hilbert space Lp space|.
Strong convergence of a sequence ψkL2 to an element means that
as. Here the notion of convergence corresponds to the norm on.
In contrast weak convergence only demands that
for all functions .
For given test functions, the relevant notion of convergence only corresponds to the topology used in.
For example, in the Hilbert space, the sequence of functions
form an orthonormal basis.
In particular, the limit of ψk as does not exist.
On the other hand, by the Riemann–Lebesgue lemma, the weak limit exists and is zero.

Distributions

One normally obtains spaces of distributions by forming the strong dual of a space of test functions.
In an alternative construction of such spaces, one can take the weak dual of a space of test functions inside a Hilbert space such as.
Thus one is led to consider the idea of a rigged Hilbert space.

Weak topology induced by the algebraic dual

Suppose that is a vector space and X# is the algebraic dual space of .
If is endowed with the weak topology induced by X# then the continuous dual space of is, every bounded subset of is contained in a finite-dimensional vector subspace of, every vector subspace of is closed and has a topological complement.

Operator topologies

If and are topological vector spaces, the space of continuous linear operators may carry a variety of different possible topologies.
The naming of such topologies depends on the kind of topology one is using on the target space to define operator convergence.
There are, in general, a vast array of possible operator topologies on, whose naming is not entirely intuitive.
For example, the strong operator topology on is the topology of pointwise convergence.
For instance, if is a normed space, then this topology is defined by the seminorms indexed by :
More generally, if a family of seminorms Q defines the topology on, then the seminorms on defining the strong topology are given by
indexed by and.
In particular, see the weak operator topology and weak* operator topology.