Comparison of topologies


In topology and related areas of mathematics, the set of all possible topologies on a given set forms a partially ordered set. This order relation can be used for comparison of the topologies.

Definition

A topology on a set may be defined as the collection of subsets which are considered to be "open". An alternative definition is that it is the collection of subsets which are considered "closed". These two ways of defining the topology are essentially equivalent because the complement of an open set is closed and vice versa. In the following, it doesn't matter which definition is used.
Let τ1 and τ2 be two topologies on a set X such that τ1 is contained in τ2:
That is, every element of τ1 is also an element of τ2. Then the topology τ1 is said to be a coarser topology than τ2, and τ2 is said to be a finer topology than τ1.
If additionally
we say τ1 is strictly coarser than τ2 and τ2 is strictly finer than τ1.
The binary relation ⊆ defines a partial ordering relation on the set of all possible topologies on X.

Examples

The finest topology on X is the discrete topology; this topology makes all subsets open. The coarsest topology on X is the trivial topology; this topology only admits the empty set
and the whole space as open sets.
In function spaces and spaces of measures there are often a number of possible topologies. See topologies on the set of operators on a Hilbert space for some intricate relationships.
All possible polar topologies on a dual pair are finer than the weak topology and coarser than the strong topology.

Properties

Let τ1 and τ2 be two topologies on a set X. Then the following statements are equivalent:
Two immediate corollaries of this statement are
One can also compare topologies using neighborhood bases. Let τ1 and τ2 be two topologies on a set X and let Bi be a local base for the topology τi at xX for i = 1,2. Then τ1 ⊆ τ2 if and only if for all xX, each open set U1 in B1 contains some open set U2 in B2. Intuitively, this makes sense: a finer topology should have smaller neighborhoods.

Lattice of topologies

The set of all topologies on a set X together with the partial ordering relation ⊆ forms a complete lattice that is also closed under arbitrary intersections. That is, any collection of topologies on X have a meet and a join. The meet of a collection of topologies is the intersection of those topologies. The join, however, is not generally the union of those topologies but rather the topology generated by the union.
Every complete lattice is also a bounded lattice, which is to say that it has a greatest and least element. In the case of topologies, the greatest element is the discrete topology and the least element is the trivial topology.