Social simulation
Social simulation is a research field that applies computational methods to study issues in the social sciences. The issues explored include problems in computational law, psychology, organizational behavior, sociology, political science, economics, anthropology, geography, engineering, archaeology and linguistics.
Social simulation aims to cross the gap between the descriptive approach used in the social sciences and the formal approach used in the natural sciences, by moving the focus on the processes/mechanisms/behaviors that build the social reality.
In social simulation, computers support human reasoning activities by executing these mechanisms. This field explores the simulation of societies as complex non-linear systems, which are difficult to study with classical mathematical equation-based models. Robert Axelrod regards social simulation as a third way of doing science, differing from both the deductive and inductive approach; generating data that can be analysed inductively, but coming from a rigorously specified set of rules rather than from direct measurement of the real world. Thus, simulating a phenomenon is akin to generating it—constructing artificial societies. These ambitious aims have encountered [|several criticisms].
The social simulation approach to the social sciences is promoted and coordinated by three regional associations, ESSA for Europe, North America, and PAAA .
History and development
The history of the agent-based model can be traced back to the Von Neumann machine, a theoretical machine capable of reproducing itself. The device von Neumann proposed would follow precisely detailed instructions to fashion a copy of itself. The concept was then improved by von Neumann's friend Stanislaw Ulam, also a mathematician; Ulam suggested that the machine be built on paper, as a collection of cells on a grid. The idea intrigued von Neumann, who drew it up—creating the first of devices later termed cellular automata.Another improvement was brought by mathematician, John Conway. He constructed the well-known Game of Life. Unlike the von Neumann's machine, Conway's Game of Life operated by simple rules in a virtual world in the form of a 2-dimensional checkerboard.
The birth of the agent-based model as a model for social systems was primarily brought about by a computer scientist, Craig Reynolds. He tried to model the reality of lively biological agents, known as the artificial life, a term coined by Christopher Langton.
Joshua M. Epstein and Robert Axtell developed the first large scale agent model, the Sugarscape, to simulate and explore the role of social phenomena such as seasonal migrations, pollution, sexual reproduction, combat, transmission of disease, and even culture.
Kathleen M. Carley published "Computational Organizational Science and Organizational Engineering" defining the movement of simulation into
organizations, established a journal for social simulation applied to organizations and complex socio-technical systems: Computational and Mathematical Organization Theory, and was the founding president of the North American Association of Computational Social and Organizational Systems that morphed into the current CSSSA.
Nigel Gilbert published with Klaus G. Troitzsch the first textbook on Social Simulation: Simulation for the Social Scientist and established its most relevant journal: the Journal of Artificial Societies and Social Simulation.
More recently, Ron Sun developed methods for basing agent-based simulation on models of human cognition, known as cognitive social simulation
Topics
Here are some sample topics that have been explored with social simulation:- Social norms: Robert Axelrod has used simulations to investigate the foundation of morality; others have modeled the emergence of norms using memes, or how social norms and emotions can regulate each other.
- Institutions: by investigating under what conditions agents manage to coordinate, or by modeling the works of Robert Putnam on civic traditions
- Reputation, for example by making agents with a model of reputation from Pierre Bourdieu and observing their behavior in a virtual marketplace.
- Knowledge transmission and the social process of science: there is a special section on that topic in the Journal of Artificial Societies and Social Simulation
- Elections: Kim has modeled a psychological model of judgement from previous research, and compared the statistical regularities of the simulation with empirical observations of voter behavior; others have compared delegation methods.
- Economics: see computational economics and agent-based computational economics.
Types of simulation and modeling
There are four major types of social simulation:
- System level simulation.
- System level modeling.
- Agent-based simulation.
- Agent-based modeling.
System level simulation
System Level Simulation is the oldest level of social simulation. System level simulation looks at the situation as a whole. This theoretical outlook on social situations uses a wide range of information to determine what should happen to society and its members if certain variables are present. Therefore, with specific variables presented, society and its members should have a certain response to the new situation. Navigating through this theoretical simulation will allow researchers to develop educated ideas of what will happen under some specific variables.For example, if NASA were to conduct a system level simulation it would benefit the organization by providing a cost-effective research method to navigate through the simulation. This allows the researcher to steer through the virtual possibilities of the given simulation and develop safety procedures, and to produce proven facts about how a certain situation will play out.
System level modeling
System level modeling aims to specifically predict and convey any number of actions, behaviors, or other theoretical possibilities of nearly any person, object, construct et cetera within a system using a large set of mathematical equations and computer programming in the form of models.A model is a representation of a specific thing ranging from objects and people to structures and products created through mathematical equations and are designed, using computers, in such a way that they are able to stand-in as the aforementioned things in a study. Models can be either simplistic or complex, depending on the need for either; however, models are intended to be simpler than what they are representing while remaining realistically similar in order to be used accurately. They are built using a collection of data that is translated into computing languages that allow them to represent the system in question. These models, much like simulations, are used to help us better understand specific roles and actions of different things so as to predict behavior and the like.
Agent-based simulation
consists of modeling different societies after artificial agents, and placing them in a computer simulated society to observe the behaviors of the agents. From this data it is possible to learn about the reactions of the artificial agents and translate them into the results of non-artificial agents and simulations. Three main fields in ABSS are agent-based computing, social science, and computer simulation.Agent-based computing is the design of the model and agents, while the computer simulation is the part of the simulation of the agents in the model and the outcomes. The social science is a mixture of sciences and social part of the model. It is where the social phenomena is developed and theorized. The main purpose of ABSS is to provide models and tools for agent-based simulation of social phenomena. With ABSS we can explore different outcomes for phenomena where we might not be able to view the outcome in real life. It can provide us valuable information on society and the outcomes of social events or phenomena.
Agent-based modeling
is a system in which a collection of agents independently interact on networks. Each individual agent is responsible for different behaviors that result in collective behaviors. These behaviors as a whole help to define the workings of the network. ABM focuses on human social interactions and how people work together and communicate with one another without having one, single "group mind". This essentially means that it tends to focus on the consequences of interactions between people in a population. Researchers are better able to understand this type of modeling by modeling these dynamics on a smaller, more localized level. Essentially, ABM helps to better understand interactions between people who, in turn, influence one another. Simple individual rules or actions can result in coherent group behavior. Changes in these individual acts can affect the collective group in any given population.Agent-based modeling is an experimental tool for theoretical research. It enables one to deal with more complex individual behaviors, such as adaptation. Overall, through this type of modeling, the creator, or researcher, aims to model behavior of agents and the communication between them in order to better understand how these individual interactions impact an entire population. In essence, ABM is a way of modeling and understanding different global patterns.
Current research
There are several current research projects that relate directly to modeling and agent-based simulation the following are listed below with a brief overview.- "Generative e-Social Science for Socio-Spatial Simulation" or is a research node of the UK National Centre for e-Social Science funded by the UK research council . For further details please see: and .
- "National e-Infrastructure for Social Simulation" or is a UK-based project funded by . For further details please see: .
- "Network Models Governance and R&D collaboration networks" or is a research centre whose main focus is to identify ways to create and to assess desirable network structures for typical functions; This research will ultimately aid policy-makers at all political levels in improving the effectiveness and efficiency of network-based policy instruments at promoting the knowledge economy in Europe.
- "Agent-based Simulations of Market and Consumer Behavior" is another research group that is funded by the Unilever Corporate Research. The current research that is being conducted is investigating the usefulness of agent-based simulations for modeling consumer behavior and to show the potential value and insights it can add to long-established marketing methods.
- "New and Emergent World Models Through Individual, Evolutionary and Social Learning" or is a three-year project that will ultimately create a virtual society developed by agent-based simulation. The project will develop a simulated society capable of exploring the environment and developing its own image of this environment and the society through interaction. The goal of the research project is for the simulated society to exhibit individual learning, evolutionary learning and social learning.
- Bruch and Mare's project on neighborhood segregation: The purpose of the study is to figure out the reasoning for neighborhood segregation based on race, and to figure out the tipping point or when people become uncomfortable with the integration levels into their neighborhood, and decide to flee from the neighborhood. They set up a model using flash cards, and put the agent's house in the middle and put houses of different races surrounding the agent's house. They asked people how comfortable they would feel with different situations; if they were okay with one situation, they asked another until the neighborhood was fully integrated. Bruch and Mare's results showed that the tipping point was at 50%. When a neighborhood became 50% minority and 50% white, people of both races began to become uncomfortable and white flight began to rise. The use of agent-based modeling showed how useful it can be in the world of sociology, people did not have to answer why they would become uncomfortable, just which situation they were uncomfortable with.
- The MAELIA Program is a project dealing with the relationships between the users and managers of a natural resource, in that case water, and the related norms and laws that are to be built within them or are imposed to them by other actors. The purpose of the project is to build a generic multiscale platform which is planned to deal with water conflict-related issues.
- The is a four-year program funded by the Autonomous Region of Madrid through the program MOSI-AGIL-CM. It aims at creating a body of knowledge and practical tools which are necessary to handle more effectively the behavior of occupants of large facilities. Therefore, the project studies the development of ambient intelligence and intelligent environments supported by the use of Agent-Based Social Simulation.
- "Emergent structure. In these models, agents change location or behavior in response to social influences or selection pressures. Agents may start out undifferentiated and then change location or behavior so as to avoid becoming different or isolated. Rather than producing homogeneity, however, these conformist decisions aggregate to produce global patterns of cultural differentiation, stratification, and homophilic clustering in local networks. Other studies reverse the process, starting with a heterogeneous population and ending in convergence: the coordination, diffusion, and sudden collapse of norms, conventions, innovations, and technological standards."
- "Emergent social order. These studies show how egoistic adaptation can lead to successful collective action without either altruism or global imposition of control. A key finding across numerous studies is that the viability of trust, cooperation, and collective action depends decisively on the embeddedness of interaction."
Criticisms
Since its creation, computerized social simulation has been the target of some criticism in regard to its practicality and accuracy. Social simulation's simplification of the complex to form models from which we can better understand the latter is sometimes seen as a draw back, as using fairly simple models to simulate real life with computers is not always the best way to predict behavior.Most of the criticism seems to be aimed at agent-based models and simulation and how they work:
- Simulations, being man-made from mathematical interfaces, predict human behavior in a far too simple manner in regard to the complexities of humanity and our actions.
- Simulations cannot enlighten researchers as to how people interact or behave in ways not programmed into their models. For this reason, the scope of simulations are limited in that the researchers must already know what they are going to find at least vaguely, possibly skewing the results.
- Due to the complexities of what is being measured, simulations must be analyzed in unbiased ways; however, with the model running on a pre-made set of instructions coded into it by a modeler, biases exist almost universally.
- It is highly difficult and often impractical to attempt to link the findings from the abstract world the simulation creates and our complex society and all of its variation.