Snowboard
Snowboards are boards where both feet are secured to the same board, which are wider than skis, with the ability to glide on snow. Snowboards widths are between 6 and 12 inches or 15 to 30 centimeters. Snowboards are differentiated from monoskis by the stance of the user. In monoskiing, the user stands with feet inline with direction of travel , whereas in snowboarding, users stand with feet transverse to the longitude of the board. Users of such equipment may be referred to as snowboarders. Commercial snowboards generally require extra equipment such as bindings and special boots which help secure both feet of a snowboarder, who generally rides in an upright position. These types of boards are commonly used by people at ski hills or resorts for leisure, entertainment, and competitive purposes in the activity called snowboarding.
History
In 1917, Vern Wicklund, at the age of 13, fashioned a shred deck in Cloquet, Minnesota. This modified sled was dubbed a “bunker" by Vern and his friends. He, along with relatives Harvey and Gunnar Burgeson, patented the very first snowboard twenty two years later in 1939.However, a man by the name of Sherman Poppen, from Muskegon, MI, came up with what most consider the first "snowboard" in 1965 and was called the Snurfer who sold his first 4 "snurfers" to Randall Baldwin Lee of Muskegon, MI who worked at Outdoorsman Sports Center 605 Ottawa Street in Muskegon, MI. Randy believes that Sherman took an old water ski and made it into the snurfer for his children who were bored in the winter. He added bindings to keep their boots secure. Commercially available Snurfers in the late 1960s and early 1970s had no bindings. The snowboarder held onto a looped nylon lanyard attached to the front of the Snurfer, and stood upon several rows of square U-shaped staples that were partially driven into the board but protruded about 1 cm above the board's surface to provide traction even when packed with snow. Later Snurfer models replaced the staples with ridged rubber grips running longitudinally along the length of the board or, subsequently, as subrectangular pads upon which the snowboarder would stand. It is widely accepted that Jake Burton Carpenter and/or Tom Sims invented modern snowboarding by introducing bindings and steel edges to snowboards.
In 1981, a couple of Winterstick team riders went to France at the invitation of Alain Gaimard, marketing director at Les Arcs. After seeing an early film of this event, French skiers/surfers Augustin Coppey, Olivier Lehaneur, Olivier Roland and Antoine Yarmola made their first successful attempts during the winter of 1983 in France, using primitive, home-made clones of the Winterstick. Starting with pure powder, skateboard-shaped wooden-boards equipped with aluminium fins, foot-straps and leashes, their technology evolved within a few years to pressed wood/fiber composite boards fitted with polyethylene soles, steel edges and modified ski boot shells. These were more suitable for the mixed conditions encountered while snowboarding mainly off-piste, but having to get back to ski lifts on packed snow.
In 1985, James Bond popularized snowboarding in the movie A View to a Kill. In the scene, he escapes Soviet agents who are on skis. The snowboard he used was a Sims snowboard ridden by founder Tom Sims. The makeshift snowboard was made from the debris of a snowmobile that exploded.
At the same time the Snurfer was turning into a snowboard on the other side of the iron curtain.
In 1980, Aleksey Ostatnigrosh and Alexei Melnikov - two members of the only Snurfer club in the Soviet Union started changing the Snurfer design to allow jumping and to improve control on hard packed snow. Being completely unaware of the developments in the Snurfer/snowboard world, they attached a bungee cord to the Snurfer tail which the rider could grab before jumping. Later, in 1982, they attached a foot binding to the Snurfer. The binding was only for the back foot, and had a release capability.
In 1985, after several iterations of the Snurfer binding system, Aleksey Ostatnigrosh made the first Russian snowboard. The board was cut out of a single vinyl plastic sheet and had no metal edges. The bindings were attached by a central bolt and could rotate while on the move or be fixed at any angle.
In 1988, OstatniGROsh and MELnikov started the first Russian snowboard manufacturing company, GROMEL
The first fibreglass snowboard with binding was made by Santa Cruz inventor Gary Tracy of GARSKI with the assistance of Bill Bourke in their factory in Santa Cruz in 1982 One of these original boards is still on display at Santa Cruz Skateboards in Capitola, CA. In 1983, a teenager named David Kemper began building his first snowboards in his garage in Ontario, Canada. By 1987, was launched and was one of the top snowboard brands among Burton, Sims, and Barfoot.
By 1986, although still very much a minority sport, commercial snowboards started appearing in leading French ski resorts.
In 2008, selling snowboarding equipment was a $487 million industry. In 2008, average equipment ran about $540 including board, boots, and bindings.
Board types
The bottom or 'base' of the snowboard is generally made of UHMW and is surrounded by a thin strip of steel, known as the 'edge'. Artwork was primarily printed on PBT using a sublimation process in the 1990s, but poor color retention and fade after moderate use moved high-end producers to longer-lasting materials.Snowboards come in several different styles, depending on the type of riding intended:
- Freestyle: Generally shorter with moderate to soft flex. Freestyle snowboards have a mirror shovel at each end of the board. Freestyle snowboards usually have low-backed bindings. Incorporates a deep sidecut for quick/tight turning. Used in the pipe and in the park on various jumps and terrain features including boxes, rails, and urban features.
- Park/Jib : Flexible and short to medium length, twin-tip shape with a twin flex and an outward stance to allow easy switch riding, and easy spinning, a wider stance, with the edges filed dull is used for skateboard-park like snowboard parks.
- Freeride: Longer than freestyle and park boards. Moderate to stiff in flex and typically directional. Used from all-mountain to off-piste and backcountry riding, to 'extreme' big-mountain descents - in various types of snow from groomed hard-packed snow to soft powdery snow.
- Powder: Highly directional boards that typically have a rockered nose and tapered shape.
- All-Mountain: Most common. A mix between freeride and freestyle boards. The 'jack of all trades, master of none.' Commonly directional or directional twin in shape
- Racing/Alpine: Long, narrow, rigid, and directional shape. Used for slalom and giant slalom races, these boards are designed to excel on groomed slopes. Most often ridden with a "hard" plastic snowboard boot, but also ridden recreationally with soft boots, particularly by riders in Europe.
- Splitboard: A snowboard which splits in half lengthwise, and allows the bindings to be quickly connected to hinges aligning them longitudinally on the board, allowing the halves of the boards to function as cross country skis. Used with removable skins on the base of the board, which easily slide forward on snow but not backwards, they allow a snowboard to easily travel into the backcountry. Once the rider is ready to descend, the board halves can simply be joined back together.
Snowboard designs differ primarily in:
- Length – Boards for children are as short as ; boards for racers, or "alpine" riders, are as long as. Most people ride boards in the range. Board length used to be judged by the height of your chin. If a board held next to the frontside of your body came to your chin then it was an acceptable length. Due to the development of new technologies and board shapes, people can now ride a wider range of board sizes. Rather, the length of a snowboard corresponds mainly to the style, weight, and preference of the rider. A good rule of thumb is to stay within the recommended manufacturer weight range. The longer the board, the more stable it is at high speed, but it is also a bit tougher to maneuver. Another factor riders consider when selecting a snowboard is the type of riding it will be used for, freestyle boards being shorter than all-mountain boards.
- Width – The width is typically measured at the waist of the board, since the nose and tail width varies with the sidecut and taper. Freestyle boards are up to wide, to assist with balance. Alpine boards are typically wide, although they can be as narrow as. Most folks ride boards in the range. Riders with larger feet may have problems with narrower boards, as the rider's toes and/or heels may extend over the edge of the board, and interfere with the board's ability to make turns once it is set on edge, or 'get hung up on the snow.' This is called toe/heel-drag, and can be cured by either choosing a wider board, adjusting the stance angle, or a combination of the two.
- Sidecut – The edges of the board are symmetrically curved concavely, so that the width at the tip and tail is greater than the center. This curve aids turning and affects the board's handling. The curve has a radius that might be a short as on a child's board or as large as on a racer's board. Most boards use a sidecut radius between. Shorter sidecut radii are generally used for halfpipe riding while longer sidecut radii are used for freeride-alpine-racing riding. One new development in sidecuts was the introduction of Magne-Traction by Mervin, which manufactures: Lib Tech, GNU, and Roxy snowboards. Magne-Traction incorporates seven bumps on each side of the board which LibTech speculates will improve edge holding.
- Flex – The flexibility of a snowboard affects its handling and typically varies with the rider's weight. Usually a harder flex makes turning harder while a softer flex makes the board less stable at high speed. There is no standard way to quantify snowboard stiffness, but novices and boarders who mostly do rails tend to prefer softer flex, racers stiffer flex, and everyone else something in between. Park riders that enjoy jumps the most tend to ride stiffer twin boards.
- Tail and nose width – Many freestyle boards have equal nose/tail specs for equal performance either direction. Freeride and alpine boards, however, have a directional shape with a wider and longer nose. Boards designed for powder conditions exaggerate the differences even more for more flotation on the powder.
- Camber – The curvature of the base of the snowboard affects handling and carving. Typical modern snowboards have an upward curvature of a few degrees along the effective edges. Experimentation has led to boards with rocker, or upward curvature, which makes for a more buttery board and can improve float in deep powder.
Board construction
- Core: The core is the interior construction of the snowboard. It is typically made of laminated fiberglass around wood. Beech and Poplar are the most common woods, though other woods are used such as bamboo and birch. There have been continued experiments with aluminum, composite honeycomb, foam and resin to change, or substitute, the standard wood core. Desired properties of the core include damping, rebound, strength, flex and reduced weight.
- Base: The bottom of the board that is in contact with the snow surface. It is generally made of a porous, plastic material, that is saturated with a wax to create a very quick and smooth, hydrophobic surface. P-Tex is a brand name that has become synonymous with base material. It is important that the base be "slippery", with respect to the snow surface and board interaction. Bases are made to have amorphous areas that are porous to wax. Wax is an important finishing product for all base materials. Not only does it allow the snowboard to have a smoother glide, but it also allows the rider to change the characteristics of the base and adjust the board to the snow conditions. Different base waxes are available for different temperatures. The base, when maintained, will have a designed base structure that not only channels snow, air and water, but leaves it open enough for wax to penetrate deep inside it. This pattern is created with a stonegrind machine at the factory or a local ski shop. If the base is damaged, it is common to have it repaired in order to protect the core from exposure as well as reducing friction.
- Edge: A strip of metal, tuned normally to just less than 90-degrees, that runs the length of either side of the board. This sharp edge is necessary to be able to produce enough friction to ride on ice, and the radius of the edge directly affects the radius of carving turns, and in turn the responsiveness of the board. Kinking, rusting, or general dulling of the edge will significantly hinder the ability for the edge to grip the snow, so it is important that this feature is maintained. However, many riders who spend a fair amount of their time grinding park rails, and especially handrails, will actually use a detuning stone or another method to intentionally dull their edges, either entirely or only in certain areas. This helps to avoid "catching" on any tiny burrs or other obstructions that may exist or be formed on rails, boxes, and other types of grind. Catching on a rail can, more than likely, result in a potentially serious crash, particularly should it occur on a handrail or more advanced rail set-up. In addition, it's relatively common for freestyle riders to "detune" the edges around the board's contact points. This practice can help to reduce the chances of the rider catching an edge in a choppy or rutted-out jump landing or similar situation. It is important to keep in mind that drastic edge detuning can be near-impossible to fully reverse and will significantly impede board control & the ability to hold an edge in harder-packed snow. One area where this can be quite detrimental is in a half-pipe, where well-sharpened edges are often crucially important for cutting through the hard, sometimes icy, walls.
- Laminate: The snowboard's core is also sandwiched on the top and bottom by at least two layers of fiberglass. The fiberglass adds stiffness and torsional strength to the board. The fiberglass laminate may be either biaxial, triax, or quadax. Some snowboards also add carbon and aramid stringers for additional elasticity and strength.
- Camber: Camber refers to the bend of the board from tip to tail. Traditionally boards have a raised camber, meaning that if one were to lay it flat the board comes off the ground between the spots where one's feet would be. In 2007 companies began to manufacture a number of new camber designs. All fall into these four main categories.
- Production: There are some manufactures that perform the entire process of snowboard construction and they manufacture over 500 per day with at least 30 different models. There is a great amount of manual work that goes into it as opposed to all of it being performed by machines and robots.
Sustainable Snowboard Manufacturing
- One company, Burton Snowboards, in 2007 employed an interesting technique in their attempts to decrease the use of the valuable forest. The core, as mentioned above, was made from a thin honeycomb structure of Aluminum and they called the board the "Alumifly". Now, one might debate that the production of Aluminum is toxic process, however, Aluminum is now being praised for its recycling prowess. This extremely abundant element is 100% recyclable and requires only 5% of the energy it takes to make Aluminum from ore. Considering all of the Aluminum in circulation today, snowboard cores could easily be made from recycled cans.
- Niche Snowboards, based out of Salt Lake City Utah is another snowboard manufacturer that has really been revolutionizing the industry. Founded with a focus on the relationships between materials, our environment, and ourselves, the company has an incredible line-up of ecologically-minded boards. Their technology includes: recycled materials, sustainably harvested wood cores, "hemphop stringers", Magma Fiber, Bio-resins, and bamboo topsheets.
- The boards from the company are made with 100% clean energy, 98% locally sourced materials and are hand crafted. They claim their facility is the newest, most technologically advanced and ecologically responsible manufacturing facility in the snowboard industry.
Boots
Snowboard boots are mostly considered soft boots, though alpine snowboarding uses a harder boot similar to a ski boot. A boot's primary function is to transfer the rider's energy into the board, protect the rider with support, and keep the rider's feet warm. A snowboarder shopping for boots is usually looking for a good fit, flex, and looks. Boots can have different features such as lacing styles, heat molding liners, and gel padding that the snowboarder also might be looking for. Tradeoffs include rigidity versus comfort, and built in forward lean, versus comfort.There are three incompatible types:
- Standard boots fit "flow" and "strap" bindings and are by far the most common. No part of the boot specifically attaches to the board. Instead, the binding applies pressure in several places to achieve firm contact. Soft boots have a flexible outer boot and an inner bladder. The outer boot has a treaded sole. The inner bladder provides support and helps hold the heel of your foot in place.
- "Step in" boots have a metal clasp on the bottom to attach to "step in" bindings. The boot must match the binding.
- Hard boots are used with special bindings. They are similar to skier's boots. Hard boots are heavier than soft boots, and also have an inner bladder.
Bindings
Bindings are separate components from the snowboard deck and are very important parts of the total snowboard interface. The bindings' main function is to hold the rider's boot in place tightly to transfer their energy to the board. Most bindings are attached to the board with three or four screws that are placed in the center of the binding. Although a rather new technology from Burton called Infinite channel system uses two screws, both on the outsides of the binding.There are several types of bindings. Strap-in, step-in, and hybrid bindings are used by most recreational riders and all freestyle riders.
Strap-in
These are the most popular bindings in snowboarding. Before snowboard specific boots existed, snowboarders used any means necessary to attach their feet to their snowboards and gain the leverage needed for turning. Typical boots used in these early days of snowboarding were Sorels or snowmobile boots. These boots were not designed for snowboarding and did not provide the support desired for doing turns on the heel edge of a snowboard. As a result, early innovators such as Louis Fournier conceived the "high-back" binding design which was later commercialized and patented by Jeff Grell. The highback binding is the technology produced by most binding equipment manufacturers in the snowboard industry. The leverage provided by highbacks greatly improved board control. Snowboarders such as Craig Kelly adapted plastic "tongues" to their boots to provide the same support for toe-side turns that the highback provided for heel-side turns. In response, companies such as Burton and Gnu began to offer "tongues".With modern strap bindings, the rider wears a boot which has a thick but flexible sole, and padded uppers. The foot is held onto the board with two buckle straps – one strapped across the top of the toe area, and one across the ankle area. They can be tightly ratcheted closed for a tight fit and good rider control of the board. Straps are typically padded to more evenly distribute pressure across the foot. While nowhere near as popular as two-strap bindings, some people prefer three-strap bindings for more specialized riding such as carving. The third strap tends to provide additional stiffness to the binding.
Cap-strap bindings are a recent modification that provide a very tight fit to the toe of the boot, and seats the boot more securely in the binding. Numerous companies have adopted various versions of the cap strap.
Step-in
Innovators of step-in systems produced prototypes and designed proprietary step-in boot and binding systems with the goal of improving the performance of snowboard boots and bindings, and as a result, the mid-90s saw an explosion of step-in binding and boot development. New companies, Switch and Device, were built on new step-in binding technology. Existing companies Shimano, K2 and Emery were also quick to market with new step-in technology. Meanwhile, early market leaders Burton and Sims were noticeably absent from the step-in market. Sims was the first established industry leader to market with a step-in binding. Sims licensed a step-in system called DNR which was produced by the established ski-binding company Marker. Marker never improved the product which was eventually discontinued. Sims never re-entered the step-in market.The risk of commercial failure from a poorly performing Step-in binding presented serious risk to established market leaders. This was evidenced by Airwalk who enjoyed 30% market share in snowboard boot sales when they began development of their step-in binding system. The Airwalk step-in System experienced serious product failure at the first dealer demonstrations, seriously damaging the company's credibility and heralded a decline in the company's former position as the market leader in Snowboard boots. Established snowboarding brands seeking to gain market share while reducing risk, purchased proven step-in innovators. For example, snowboard boot company Vans purchased the Switch step-in company, while Device step-in company was purchased by Ride Snowboards.
Although initially refusing to expose themselves to the risk and expense associated with bringing a step-in system to market, Burton chose to focus primarily on improvements to existing strap-in technology. However, Burton eventually released 2 models of step-in systems, the SI and the PSI, Burton's SI system enjoyed moderate success, yet never matched the performance of the company's strap-in products and was never improved upon. Burton never marketed any improvements to either of their step-in binding systems and eventually discontinued the products.
Most Popular step-in systems used unique and proprietary mechanisms, such as the step-ins produced by Burton, Rossignol and Switch. Shimano and K2 used a technology similar to clipless bicycle pedals. Burton and K2 Clicker step-in binding systems are no longer in production as both companies have opted to focus on the strap-in binding system. Rossignol remains as the sole provider of step-in binding systems and offers them primarily to the rental market as most consumers and retailers alike have been discouraged by lack of adequate development and industry support for step-in technology.
Speed entry (hybrid)
There are also proprietary systems that seek to combine the convenience of step-in systems with the control levels attainable with strap-ins. An example is the Flow binding system, which is similar to a strap-in binding, except that the foot enters the binding through the back. The back flips down and allows the boot to slide in; it's then flipped up and locked into place with a clamp, eliminating the need to loosen and then re-tighten straps every time the rider frees and then re-secures their rear foot. The rider's boot is held down by an adjustable webbing that covers most of the foot. Newer Flow models have connected straps in place of the webbing found on older models; these straps are also micro adjustable. In 2004, K2 released the Cinch series, a similar rear-entry binding; riders slip their foot in as they would a Flow binding, however rather than webbing, the foot is held down by straps.Highback
A stiff molded support behind the heel and up the calf area. The HyBak was originally designed by inventor Jeff Grell and built by Flite Snowboards. This allows the rider to apply pressure and effect a "heelside" turn. Some high backs are stiff vertically but provide some flex for twisting of the riders legs.Plate
Plate bindings are used with hardboots on Alpine or racing snowboards. Extreme carvers and some Boarder Cross racers also use plate bindings. The stiff bindings and boots give much more control over the board and allow the board to be carved much more easily than with softer bindings. Alpine snowboards tend to be longer and thinner with a much stiffer flex for greater edge hold and better carving performance.Snowboard bindings, unlike ski bindings, do not automatically release upon impact or after falling over. With skis, this mechanism is designed to protect from injuries caused by skis torn in different directions. Automatic release is not required in snowboarding, as the rider's legs are fixed in a static position and twisting of the knee joint cannot occur to the same extent. Furthermore, it reduces the dangerous prospect of a board hurtling downhill riderless, and the rider slipping downhill on his back with no means to maintain grip on a steep slope. Nevertheless, some ski areas require the use of a "leash" that connects the snowboard to the rider's leg or boot, in case the snowboard manages to get away from its rider. This is most likely to happen when the rider removes the board at the top or the bottom of a run.
A Noboard is a snowboard binding alternative with only peel and stick pads applied directly to any snowboard deck and no attachment.
Stomp pad
Stomp pads, which are placed between the bindings closer to the rear binding, allow the rider to better control the board with only one boot strapped in, such as when maneuvering onto a chair lift, riding a ski tow or performing a one footed trick. Whereas the upper surface of the board is smooth, the stomp pad has a textured pattern which provides grip to the underside of the boot. Stomp pads can be decorative and vary in their size, shape and the kind and number of small spikes or friction points they provide.Stances
There are two types of stance-direction used by snowboarders. A "regular" stance places the rider's left foot at the front of the snowboard. "Goofy", the opposite stance direction, places the rider's right foot at the front, as in skateboarding. Regular is the most common. There are different ways to determine whether a rider is "regular" or "goofy". One method used for first time riders is to observe the first step forward when walking or climbing up stairs. The first foot forward would be the foot set up at the front of the snowboard. Another method used for first time riders is to use the same foot that you kick a football with as your back foot. This is a good method for setting up the snowboard stance for a new snowboarder. However having a surfing or skateboarding background will also help a person determine their preferred stance, although not all riders will have the same stance skateboarding and snowboarding. Another way to determine a rider's stance is to get the rider to run and slide on a tiled or wooden floor, wearing only socks, and observe which foot the person puts forward during the slide. This simulates the motion of riding a snowboard and exposes that persons natural tendency to put a particular foot forward. Another method is to stand behind the first-timer and give them a shove, enough for them to put one foot forward to stop themselves from falling. Other good ways of determining which way you ride are rushing a door or going into a defensive boxing stance.Most experienced riders are able to ride in the opposite direction to their usual stance. This is called riding "fakie" or "switch".
Stance width
Stance width helps determine the rider's balance on the board. The size of the rider is an important factor as well as the style of their riding when determining a proper stance width. A common measurement used for new riders is to position the bindings so that the feet are placed a little wider than shoulder width apart. Another, less orthodox form of measurement may be taken by putting your feet together and place your hands, palm down, on the ground in a straight line with your body by squatting down. This generally gives a good natural measurement for how wide of a base your body uses to properly balance itself when knees are bent. However, personal preference and comfort are important and most experienced riders will adjust the stance width to personal preference. Skateboarders should find that their snowboarding and skateboarding stance widths are relatively similar.A wider stance, common for freestyle riders, gives more stability when landing a jump or jibbing a rail. Control in a wider stance is reduced when turning on the piste. Conversely a narrow stance will give the rider more control when turning on the piste but less stability when freestyling. A narrow stance is more common for riders looking for quicker turn edge-hold. The narrow stance will give the rider a concentrated stability between the bindings allowing the board to dig into the snow quicker than a wider stance so the rider is less prone to.
Binding angle
Binding angle is defined by the degrees off of perpendicular from the length of the snowboard. A binding angle of 0° is when the foot is perpendicular to the length of the snowboard. Positive angles are pointed towards the front of the board, whereas negative angles are pointed towards the back of the board. The question of how much the bindings are angled depends on the rider's purpose and preference. Different binding angles can be used for different types of snowboarding. Someone who participates in freestyle competition would have a much different "stance" than someone who explores backcountry and powder. The recent advancement and boom of snowboard culture and technology has made binding angle adjustments relatively easy. Binding companies design their bindings with similar baseplates that can easily mount onto any type of snowboard regardless of the brand. With the exception of Burton, and their newly released "channel system", adjusting bindings is something that remains constant among all snowboarders. Done with a small screw-driver or a snowboard tool, the base plates on bindings can be easily rotated to whatever preferred stance. One must un-screw the baseplate, pick their degree angles, and then re-screw the baseplates. Bindings should also regularly be checked to ensure that the screws don't come undone from the movements of snowboarding.- Forward stance: Suitable for most purposes, both feet are angled forward. Frequently the leading foot is angled roughly 15° to 21° and the trailing foot at 0° to 10°. A downside is that a rider's balance is notably different when riding in reverse compared to their forward stance. This can be compensated for by learning how to ride backwards with this stance, also known as riding "switch", or by choosing another stance such as Duck, or Flat stance. As riders become more experienced, they can experiment with different "stances" to feel what is best for them.
- Alpine stance: Used primarily for alpine racing, the leading foot may be from 50° up to around 70° and the trailing foot generally identical or up to 10˚ less. This gives the rider balance on their board, while angling their feet for best directional control at high speeds.
- Duck stance: Useful for tricks by removing the forward bias altogether, the feet are angled outwards in opposite directions, such as 15° for the front foot and -6° for the back foot. This stance is becoming increasingly popular, and is the most resilient of the three. The feet do not actually have to be angled equally outwards to be considered duck stance. The back foot simply has to be angled less than zero degrees. These angles give the rider a dominant front foot angle at all times which makes it easier for a rider to change the board direction mid-run. This change in board direction mid-run is called riding "Switch" or "Fakie". Duck stance is also very popular for park riders because it gives them the versatility to move their board in all directions. It is easier to spin, balance on rails and boxes, and land "switch" when one's feet are both angled outward. The degree of the angle depends on the individual.
- Flat stance: Also popular with riders who wish to have a consistent stance riding forward or backward, a flat stance is simply one in which both feet are at a zero angle, or perpendicular to the length of the board. This may result in "toe drag" on narrower boards or if the rider has larger feet, in which the rider's toes overhang the edge of the board and may contact the snow during sharp turns on the toe side of the board. The "Flat" Stance is no longer popular and is not recommended by the AASI. Riders who use the flat stance will commonly experience pain in their ankles and calves when turning toe-side and heel-side.
Popular destinations
- Whistler, Canada
- Mammoth Mountain, USA
- Mount Bachelor, USA
- Vail, USA
- Davos, Switzerland
- Laax, Switzerland
- Verbier, Switzerland
- St Anton, Austria
- Serre Chevalier, France
- Chamonix, France
- Livigno, Italy
- Sierra Nevada, Spain
- Cardrona, New Zealand
- Falls Creek, Australia
- Hakuba, Japan
- Sheregesh, Russia
- Nevado de Chillan, Chile
- El Colorado, Chile
- Las Lenas, Argentina
- Salt Lake City USA
- Mt. Hood, USA
Notable snowboarders
- Jamie Anderson
- Gretchen Bleiler
- Red Gerard
- Torstein Horgmo
- Terje Håkonsen
- Mark McMorris
- Lindsey Jacobellis
- Jeremy Jones
- Danny Kass
- Craig Kelly
- Chloe Kim
- Shawn Orecchio
- Travis Rice
- Kelly Clark
- Hannah Teter
- Torah Bright
- Kaitlyn Farrington
- Danny Davis
- Sage Kotsenburg
- Kevin Pearce
- Shaun White