Satellite truck


A satellite truck is a mobile communications satellite earth station, typically mounted on a truck chassis as a platform. Employed in remote television broadcasts, satellite trucks transmit video signals back to studios or production facilities for editing and broadcast. Satellite trucks usually travel with a production truck, which contains video cameras, sound equipment and a crew. A satellite truck has a large satellite dish antenna which is pointed at a communications satellite, which then relays the signal back down to the studio. Satellite communication allows transmission from any location that the production truck can reach, provided a line of sight to the desired satellite is available.

Equipment

Typically a satellite truck will have its own onboard power source such as an electrical generator or inverter to create the alternating current to power all the transmission systems, which makes it a true independent mobile satellite transmission entity. Often such trucks also have various degrees of video production equipment and video editing gear. This equipment allows these trucks to also act as mobile electronic news gathering facilities, or they can even be outfitted to do an electronic field production to create an entire television show with multiple switched professional video cameras, character generators for digital on-screen graphics, video tape recorders and video servers.
Most satellite trucks have typically been built on a light or mid-duty truck chassis with 6 wheels; usually with 4 tires on the rear axle. All the equipment is mounted into the truck in racks that are fabricated into the box. Satellite Trucks are generally referred to as 'fixed load' vehicles, meaning that the amount of equipment on-board generally does not change and the weight of the truck ordinarily does not fluctuate.

Regulations

Some of the larger satellite trucks weigh over, and therefore require the driver to obtain a Commercial Driver's License. Satellite trucks over GVWR are required to stop at weigh stations, undergo annual DOT inspections, and the Truck driver needs to pass a physical examination mandated by the DOT, maintain an accurate Drivers Daily Logbook, and comply with Hours of Service rules for professional drivers. Satellite Trucks part of a commercial fleet, or weighing over 10,000 pounds are considered commercial vehicles by the United States Department of Transportation.

Uses

Some newer generation satellite trucks are also being used for crisis communications and command and control centers for law enforcement emergency managers and public utility companies.
The fact that these trucks do not rely upon terrestrial communication systems makes them ideal for information distribution and bandwidth creation in the aftermath of severe tropical cyclones, floods, and earthquakes when these land-based systems are damaged or destroyed. In the wake of hurricane Katrina, when the communication ability of news media outlets far exceeded that of many federal and state relief agencies, many governmental bodies have since migrated to a mobile satellite-based communication platform.

C-Band satellite truck

In the United States, C-Band Transportable uplinks was initially used to transmit longer-format live television like sports television events and entertainment television programming. C-band satellite transmission requires a larger antenna than the Ku band trucks developed later in the 1980s, and a larger satellite antenna takes longer to set up and deploy.
Prior to dispatch of a C Band transportable uplink, an RF Interference study needs to be completed. An RFI is a computer-generated report detailing any FCC protected microwave stations in the immediate area. This "frequency coordination" process has to be completed before an uplink transmission can commence. Terrestrial point-to-point signals share C-Band transmit frequencies, and full-time terrestrial signals take priority over ad hoc C-Band uplink transmissions. Factors such as terrain, buildings and other structures are considered when determining the likelihood of interference from the TES.
Historically, it was necessary to install land telephone lines where the TES was located. This was expensive and difficult to do at the time since telephone companies were not used to setting up phone lines without notice of several days or even weeks. Early scrambling or encryption methods required a hard line for authorization of receive sites. Today, a digital cellular telephone is sufficient for most situations.
C-Band transportable service remained a prevalent source of long-haul transmission because of its immunity to the "rain fade" that Ku band experiences in significant rainstorms. C-Band transportable services cost more than similar Ku service due to the robust nature of the signal, the larger physical size of the truck, and specialized nature of C-Band transmissions.
With the advent of Ku band trucks and long-haul fiber optics providing similar signal qualities, C-Band transportable service experienced a slowdown in service volume in the 1990s. It's still used in situations where rain-fades are unacceptable and where fiber-optic links are not practical. C-Band uplinks are still commonly used for golf, auto racing, horse racing, and major college sports events in rural areas where local fiber interconnects to long-haul networks are either not available or where the low number of events at the venue per year made installation of fiber not cost effective. Ku TES outnumber C perhaps 30:1, when you consider the number of TV Station, Network and "freelance" Ku trucks versus the limited number of C Band trucks.
Even with diminished usage, C-Band transportable services are still utilized as an alternative to fiber optic cross-country transport as an 'alternate' transmission path. Most broadcast networks utilize both in order to protect their remote broadcasts that may be worth millions in rightholder fees.
In the 2000 era, High Definition Television remote broadcasts caused a resurgence in C-Band transportable uplink service. The major factor in the resurgence was the limited amount of available bandwidth in local and long-haul fiber optic service, while uplink systems merely required the installation of High Definition MPEG digital encoders and decoders at either end.

Ku band satellite truck

Mobile Ku band satellite transmissions for television broadcasts started in Canada, until Conus Communications of St. Paul, MN along with Hubcom in Florida built the first SNG or Satellite News Gathering truck in 1983. Along with the truck, and later used vans purchased from Telesat in Canada, Conus developed a comms, or communications, system which allowed satellite transmissions without the need to drop phone lines. ENG, or Electronic News Gathering was never the same, and it was now possible to go 'live' from anywhere the truck could drive by raising the antenna and seeing the satellite.
The development of the mobile phone, and its decreasing cost of operation and hardware over the years means trucks didn't need a satellite "comms" system in most places in the continental United States. Satellite time was also easily booked on an 'as-needed' basis, typically around $500 per hour for the common Ku band TV transmission.
Over the years, Ku band Satellite trucks have undergone changes, from large trucks with C Band dishes outfitted with landing pads and antenna wings to make them FCC compliant to simpler rapidly deployable Ku band type. The Ku band uplink vehicles are available in a series of small to large vehicles varying from an SUV, van, Sprinter, "bread truck ", to the more common carryall. The typical Ku uplink vehicles, are as large as 13 feet 6 inches tall by 40 feet long, the largest commercial units allowed on the roads of the continental United States.
Satellite Vehicles are either TV station or network-owned and custom suited to their internal usage needs or are rental units owned by independent companies. Independently owned satellite uplink vehicles are often designed to be versatile to performing multiple uplink functions ranging from straight uplink/downlink services, network news, satellite media tours, or even being configured to being a full production vehicle.
Such large uplink trucks now have multiple camera television production capabilities all on board, as pioneered by SDTV in the early 1990s. This combination, uplink with production, Transportable Earth Station are now the preferred vehicle for smaller on location live television broadcast instead of a separate uplink vehicle working alongside a larger 50-foot tractor trailer production-only vehicle, although the latter is still a regular occurrence.
There are a few combination production/uplink combination vehicles where the uplink system is located on the semi-tractor and the production facilities are in the semi-trailer. These systems add the ability to physically separate the uplink from the production unit. Typical scenarios for this are when the production trailer has to park inside a building or if the uplink antenna has to be positioned farther away from the production trailer in order to make line-of-sight to the satellite arc.
Larger Satellite vehicles are often television production control rooms /Mobile Newsrooms/Workspaces on wheels, operated and maintained by broadcast engineers known as satellite truck operators. Both operators, of units large and small, are known to have a vagabond lifestyle, spending large parts of their lives on the road.
Now even a simple flyaway transportable units can be packed all into two suitcases, all small enough to be airline compliant. The smaller suitcase flyaway units are often used to supplement a build on location television control room or to provide satellite uplink facilities in locations where a truck cannot be easily transported.

Manufacturers

Full-time Satellite Truck operators can earn from US$35,000 to over $100,000 per year depending on the number of hours worked, years of experience in the field, and the area in the US typically served. There are some companies that keep databases of part-time or freelance satellite truck operators.
The National Association of Broadcasters occasionally offer courses on the operation of satellite trucks but most operators have learned their trade from an industry mentor or a combination of both formal in school and on the job informal training.
While helpful, formal training in electronics is not required to be a satellite truck operator. Even camera persons have made the transition from photography to transmission, a clear understanding of the operation of each device on the truck and at what point in the transmission flow it is used are required. Most modern day electronic equipment is too complicated to repair especially in the field. A truck operator, however, is expected to be able to quickly identify a defective device and either replace it or engineer a way around it. It is for this reason a strong transmission flow understanding is essential.
Having a background in auto mechanics is also a plus especially when you consider the truck's main power source is a diesel generator. At the absolute least, an operator should know how to change an oil, fuel, or air filter and troubleshoot common engine problems i.e. burning oil, fuel pump failure, starter/alternator issues...
Like other vehicles, trucks need regular maintenance and upkeep. Commercial vehicles must pass annual DOT inspection inspections. Older trucks are more difficult to maintain because of increased vehicle wear, availability of parts, and availability of qualified service personnel fluent in maintenance issues of older vehicles. The expected lifespan of most truck chassis is roughly 8–10 years or 200,000 miles, dependent on its operating environment. It is common for satellite truck boxes to be swapped over to a newer chassis.
Driving the truck to and from event locations is a large, often overlooked, part of the job. Satellite truck operators are often not as interchangeable as reporters/producers/camera crews, and as a result, can be worked full news cycles. When this happens, the DOT Hours of Service rules may prohibit the operator to drive the truck. This often proves to be complicated for planning and logistic purposes.
By the very nature of the work, a truck operator is expected to travel, often at the last minute. Most uplink-for-hire operators keep a packed suitcase with at least 7 days of clothing in or near the truck for prompt deployment.