Rho meson


In particle physics, a rho meson is a short-lived hadronic particle that is an isospin triplet whose three states are denoted as, and. Along with pions and omega mesons, the rho meson carries the nuclear force within the atomic nucleus. After the pions and kaons, the rho mesons are the lightest strongly interacting particle, with a mass of for all three states.
The rho mesons have a very short lifetime and their decay width is about with the peculiar feature that the decay widths are not described by a Breit–Wigner form. The principal decay route of the rho mesons is to a pair of pions with a branching rate of 99.9%.

Composition

In the De Rujula-Georgi-Glashow description of hadrons, the rho mesons can be interpreted as a bound state of a quark and an anti-quark and is an excited version of the pion. Unlike the pion, the rho meson has spin j = 1 and a much higher value of the mass. This mass difference between the pions and rho mesons is attributed to a large hyperfine interaction between the quark and anti-quark. The main objection with the De Rujula-Georgi-Glashow description is that it attributes the lightness of the pions as an accident rather than a result of chiral symmetry breaking.
The rho mesons can be thought of as the gauge bosons of a spontaneously broken gauge symmetry whose local character is emergent ; Note that this broken gauge symmetry is distinct from the global chiral symmetry acting on the flavors. This was described by Howard Georgi in a paper titled "The Vector Limit of Chiral Symmetry" where he ascribed much of the literature of hidden local symmetry to a non-linear sigma model.
Particle nameParticle
symbol
Antiparticle
symbol
Quark
content
Mass IGJPCSCB'Mean lifetime Commonly decays to
Charged rho meson1+1000
Neutral rho mesonSelf1+1−−000