Quantum information


In physics and computer science, quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.
Quantum information, like classical information, can be processed using digital computers, transmitted from one location to another, manipulated with algorithms, and analyzed with computer science and mathematics. Recently, the field quantum computing has become an active research area because of the possibility to disrupt modern computation, communication, and cryptography.

Qubits and quantum information

Quantum information differs strongly from classical information, epitomized by the bit, in many striking and unfamiliar ways. While the fundamental unit of classical information is the bit, the most basic unit of quantum information is the qubit. Classical information is measured using Shannon entropy, while the quantum mechanical analogue is Von Neumann entropy. Given a statistical ensemble of quantum mechanical systems with the density matrix, it is given by Many of the same entropy measures in classical information theory can also be generalized to the quantum case, such as Holevo entropy and the conditional quantum entropy.
Unlike classical digital states, a qubit is continuous-valued, describable by a direction on the Bloch sphere. Despite being continuously valued in this way, a qubit is the smallest possible unit of quantum information, and despite the qubit state being continuously-valued, it is impossible to measure the value precisely. Five famous theorems describe the limits on manipulation of quantum information.
  1. no-teleportation theorem, which states that a qubit cannot be converted into classical bits; that is, it cannot be "read".
  2. no-cloning theorem, which prevents an arbitrary qubit from being copied.
  3. no-deleting theorem, which prevents an arbitrary qubit from being deleted.
  4. no-broadcast theorem, Although a single qubit can be transported from place to place, it cannot be delivered to multiple recipients.
  5. no-hiding theorem, which demonstrates the conservation of quantum information.
These theorems prove that quantum information within the universe is conserved. They open up possibilities in quantum information processing.

Quantum information processing

The state of a qubit contains all of its information. This state is frequently expressed as a vector on the Bloch sphere. This state can be changed by applying linear transformations or quantum gates to them. These unitary transformations are described as rotations on the Bloch Sphere. While classical gates correspond to the familiar operations of Boolean logic, quantum gates are physical unitary operators.
The study of all of the above topics and differences comprises quantum information theory.

Relation to quantum mechanics

is the study of how microscopic physical systems change dynamically in nature. In the field of quantum information theory, the quantum systems studied are abstracted away from any real world counterpart. A qubit might for instance physically be a photon in a linear optical quantum computer, an ion in a trapped ion quantum computer, or it might be a large collection of atoms as in a superconducting quantum computer. Regardless of the physical implementation, the limits and features of qubits implied by quantum information theory hold as all these systems are all mathematically described by the same apparatus of density matrices over the complex numbers. Another important difference with quantum mechanics is that, while quantum mechanics often studies infinite-dimensional systems such as a harmonic oscillator, quantum information theory concerns both with continuous-variable systems and finite-dimensional systems

Journals

Many journals publish research in quantum information science, although only a few are dedicated to this area. Among these are: