Algorithm
In mathematics and computer science, an algorithm is a finite sequence of well-defined, computer-implementable instructions, typically to solve a class of problems or to perform a computation. Algorithms are always unambiguous and are used as specifications for performing calculations, data processing, automated reasoning, and other tasks.
As an effective method, an algorithm can be expressed within a finite amount of space and time, and in a well-defined formal language for calculating a function. Starting from an initial state and initial input, the instructions describe a computation that, when executed, proceeds through a finite number of well-defined successive states, eventually producing "output" and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.
The concept of algorithm has existed since antiquity. Arithmetic algorithms, such as a division algorithm, was used by ancient Babylonian mathematicians c. 2500 BC and Egyptian mathematicians c. 1550 BC. Greek mathematicians later used algorithms in the sieve of Eratosthenes for finding prime numbers, and the Euclidean algorithm for finding the greatest common divisor of two numbers. Arabic mathematicians such as al-Kindi in the 9th century used cryptographic algorithms for code-breaking, based on frequency analysis.
The word algorithm itself is derived from the 9th-century mathematician Muḥammad ibn Mūsā al-Khwārizmī, Latinized Algoritmi. A partial formalization of what would become the modern concept of algorithm began with attempts to solve the Entscheidungsproblem posed by David Hilbert in 1928. Later formalizations were framed as attempts to define "effective calculability" or "effective method". Those formalizations included the Gödel–Herbrand–Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church's lambda calculus of 1936, Emil Post's Formulation 1 of 1936, and Alan Turing's Turing machines of 1936–37 and 1939.
Etymology
The word 'algorithm' has its roots in Latinizing the name of mathematician Muhammad ibn Musa al-Khwarizmi in the first steps to algorismus. Al-Khwārizmī was a mathematician, astronomer, geographer, and scholar in the House of Wisdom in Baghdad, whose name means 'the native of Khwarazm', a region that was part of Greater Iran and is now in Uzbekistan.About 825, al-Khwarizmi wrote an Arabic language treatise on the Hindu–Arabic numeral system, which was translated into Latin during the 12th century under the title Algoritmi de numero Indorum. This title means "Algoritmi on the numbers of the Indians", where "Algoritmi" was the translator's Latinization of Al-Khwarizmi's name. Al-Khwarizmi was the most widely read mathematician in Europe in the late Middle Ages, primarily through another of his books, the Algebra. In late medieval Latin, algorismus, English 'algorism', the corruption of his name, simply meant the "decimal number system". In the 15th century, under the influence of the Greek word ἀριθμός, 'number', the Latin word was altered to algorithmus, and the corresponding English term 'algorithm' is first attested in the 17th century; the modern sense was introduced in the 19th century.
In English, it was first used in about 1230 and then by Chaucer in 1391. English adopted the French term, but it wasn't until the late 19th century that "algorithm" took on the meaning that it has in modern English.
Another early use of the word is from 1240, in a manual titled Carmen de Algorismo composed by Alexandre de Villedieu. It begins with:
which translates to:
The poem is a few hundred lines long and summarizes the art of calculating with the new style of Indian dice, or Talibus Indorum, or Hindu numerals.
Informal definition
An informal definition could be "a set of rules that precisely defines a sequence of operations", which would include all computer programs, and any prescribed bureaucratic procedureor cook-book recipe.
In general, a program is only an algorithm if it stops eventually - even though infinite loops may sometimes prove desirable.
A prototypical example of an algorithm is the Euclidean algorithm, which is used to determine the maximum common divisor of two integers; an example is described by the flowchart above and as an example in a later section.
offer an informal meaning of the word "algorithm" in the following quotation:
No human being can write fast enough, or long enough, or small enough† to list all members of an enumerably infinite set by writing out their names, one after another, in some notation. But humans can do something equally useful, in the case of certain enumerably infinite sets: They can give explicit instructions for determining the nth member of the set, for arbitrary finite n. Such instructions are to be given quite explicitly, in a form in which they could be followed by a computing machine, or by a human who is capable of carrying out only very elementary operations on symbols.
An "enumerably infinite set" is one whose elements can be put into one-to-one correspondence with the integers. Thus Boolos and Jeffrey are saying that an algorithm implies instructions for a process that "creates" output integers from an arbitrary "input" integer or integers that, in theory, can be arbitrarily large. For example, an algorithm can be an algebraic equation such as y = m + n, but various authors' attempts to define the notion indicate that the word implies much more than this, something on the order of :
produce, in a "reasonable" time, output-integer y at a specified place and in a specified format.
The concept of algorithm is also used to define the notion of decidability—a notion that is central for explaining how formal systems come into being starting from a small set of axioms and rules. In logic, the time that an algorithm requires to complete cannot be measured, as it is not apparently related to the customary physical dimension. From such uncertainties, that characterize ongoing work, stems the unavailability of a definition of algorithm that suits both concrete and abstract usage of the term.
Formalization
Algorithms are essential to the way computers process data. Many computer programs contain algorithms that detail the specific instructions a computer should perform—in a specific order—to carry out a specified task, such as calculating employees' paychecks or printing students' report cards. Thus, an algorithm can be considered to be any sequence of operations that can be simulated by a Turing-complete system. Authors who assert this thesis include Minsky, Savage and Gurevich :Minsky: "But we will also maintain, with Turing … that any procedure which could "naturally" be called effective, can, in fact, be realized by a machine. Although this may seem extreme, the arguments … in its favor are hard to refute".
Gurevich: “… Turing's informal argument in favor of his thesis justifies a stronger thesis: every algorithm can be simulated by a Turing machine … according to Savage , an algorithm is a computational process defined by a Turing machine".
Turing machines can define computational processes that do not terminate. The informal definitions of algorithms generally require that the algorithm always terminates. This requirement renders the task of deciding whether a formal procedure is an algorithm impossible in the general case—due to a major theorem of computability theory known as the halting problem.
Typically, when an algorithm is associated with processing information, data can be read from an input source, written to an output device and stored for further processing. Stored data are regarded as part of the internal state of the entity performing the algorithm. In practice, the state is stored in one or more data structures.
For some of these computational process, the algorithm must be rigorously defined: specified in the way it applies in all possible circumstances that could arise. This means that any conditional steps must be systematically dealt with, case-by-case; the criteria for each case must be clear.
Because an algorithm is a precise list of precise steps, the order of computation is always crucial to the functioning of the algorithm. Instructions are usually assumed to be listed explicitly, and are described as starting "from the top" and going "down to the bottom"—an idea that is described more formally by flow of control.
So far, the discussion on the formalization of an algorithm has assumed the premises of imperative programming. This is the most common conception—one which attempts to describe a task in discrete, "mechanical" means. Unique to this conception of formalized algorithms is the assignment operation, which sets the value of a variable. It derives from the intuition of "memory" as a scratchpad. An example of such an assignment can be found below.
For some alternate conceptions of what constitutes an algorithm, see functional programming and logic programming.
Expressing algorithms
Algorithms can be expressed in many kinds of notation, including natural languages, pseudocode, flowcharts, drakon-charts, programming languages or control tables. Natural language expressions of algorithms tend to be verbose and ambiguous, and are rarely used for complex or technical algorithms. Pseudocode, flowcharts, drakon-charts and control tables are structured ways to express algorithms that avoid many of the ambiguities common in the statements based on natural language. Programming languages are primarily intended for expressing algorithms in a form that can be executed by a computer, but are also often used as a way to define or document algorithms.There is a wide variety of representations possible and one can express a given Turing machine program as a sequence of machine tables, as flowcharts and drakon-charts, or as a form of rudimentary machine code or assembly code called "sets of quadruples".
Representations of algorithms can be classed into three accepted levels of Turing machine description, as follows:
; 1 High-level description
; 2 Implementation description
; 3 Formal description
For an example of the simple algorithm "Add m+n" described in all three levels, see Algorithm#Examples.
Design
Algorithm design refers to a method or a mathematical process for problem-solving and engineering algorithms. The design of algorithms is part of many solution theories of operation research, such as dynamic programming and divide-and-conquer. Techniques for designing and implementing algorithm designs are also called algorithm design patterns, with examples including the template method pattern and the decorator pattern.One of the most important aspects of algorithm design lies in the creation of algorithm that has an efficient run-time, also known as its Big O.
Typical steps in the development of algorithms:
- Problem definition
- Development of a model
- Specification of the algorithm
- Designing an algorithm
- Checking the correctness of the algorithm
- Analysis of algorithm
- Implementation of algorithm
- Program testing
- Documentation preparation
Implementation
Computer algorithms
In computer systems, an algorithm is basically an instance of logic written in software by software developers, to be effective for the intended "target" computer to produce output from given input. An optimal algorithm, even running in old hardware, would produce faster results than a non-optimal algorithm for the same purpose, running in more efficient hardware; that is why algorithms, like computer hardware, are considered technology."Elegant" programs, "good" programs : The notion of "simplicity and elegance" appears informally in Knuth and precisely in Chaitin:
Chaitin prefaces his definition with: "I'll show you can't prove that a program is 'elegant—such a proof would solve the Halting problem.
Algorithm versus function computable by an algorithm: For a given function multiple algorithms may exist. This is true, even without expanding the available instruction set available to the programmer. Rogers observes that "It is... important to distinguish between the notion of algorithm, i.e. procedure and the notion of function computable by algorithm, i.e. mapping yielded by procedure. The same function may have several different algorithms".
Unfortunately, there may be a tradeoff between goodness and elegance —an elegant program may take more steps to complete a computation than one less elegant. An example that uses Euclid's algorithm appears below.
Computers, models of computation: A computer is a restricted type of machine, a "discrete deterministic mechanical device" that blindly follows its instructions. Melzak's and Lambek's primitive models reduced this notion to four elements: discrete, distinguishable locations, discrete, indistinguishable counters an agent, and a list of instructions that are effective relative to the capability of the agent.
Minsky describes a more congenial variation of Lambek's "abacus" model in his "Very Simple Bases for Computability". Minsky's machine proceeds sequentially through its five instructions, unless either a conditional IF–THEN GOTO or an unconditional GOTO changes program flow out of sequence. Besides HALT, Minsky's machine includes three assignment operations: ZERO, SUCCESSOR, and DECREMENT. Rarely must a programmer write "code" with such a limited instruction set. But Minsky shows that his machine is Turing complete with only four general types of instructions: conditional GOTO, unconditional GOTO, assignment/replacement/substitution, and HALT. However, a few different assignment instructions are also required for Turing-completeness; their exact specification is somewhat up to the designer. The unconditional GOTO is a convenience; it can be constructed by initializing a dedicated location to zero e.g. the instruction " Z ← 0 "; thereafter the instruction IF Z=0 THEN GOTO xxx is unconditional.
Simulation of an algorithm: computer language: Knuth advises the reader that "the best way to learn an algorithm is to try it... immediately take pen and paper and work through an example". But what about a simulation or execution of the real thing? The programmer must translate the algorithm into a language that the simulator/computer/computor can effectively execute. Stone gives an example of this: when computing the roots of a quadratic equation the computor must know how to take a square root. If they don't, then the algorithm, to be effective, must provide a set of rules for extracting a square root.
This means that the programmer must know a "language" that is effective relative to the target computing agent.
But what model should be used for the simulation? Van Emde Boas observes "even if we base complexity theory on abstract instead of concrete machines, arbitrariness of the choice of a model remains. It is at this point that the notion of simulation enters". When speed is being measured, the instruction set matters. For example, the subprogram in Euclid's algorithm to compute the remainder would execute much faster if the programmer had a "modulus" instruction available rather than just subtraction.
Structured programming, canonical structures: Per the Church–Turing thesis, any algorithm can be computed by a model known to be Turing complete, and per Minsky's demonstrations, Turing completeness requires only four instruction types—conditional GOTO, unconditional GOTO, assignment, HALT. Kemeny and Kurtz observe that, while "undisciplined" use of unconditional GOTOs and conditional IF-THEN GOTOs can result in "spaghetti code", a programmer can write structured programs using only these instructions; on the other hand "it is also possible, and not too hard, to write badly structured programs in a structured language". Tausworthe augments the three Böhm-Jacopini canonical structures: SEQUENCE, IF-THEN-ELSE, and WHILE-DO, with two more: DO-WHILE and CASE. An additional benefit of a structured program is that it lends itself to proofs of correctness using mathematical induction.
Canonical flowchart symbols: The graphical aide called a flowchart, offers a way to describe and document an algorithm. Like the program flow of a Minsky machine, a flowchart always starts at the top of a page and proceeds down. Its primary symbols are only four: the directed arrow showing program flow, the rectangle, the diamond, and the dot. The Böhm–Jacopini canonical structures are made of these primitive shapes. Sub-structures can "nest" in rectangles, but only if a single exit occurs from the superstructure. The symbols, and their use to build the canonical structures are shown in the diagram.
Examples
Algorithm example
One of the simplest algorithms is to find the largest number in a list of numbers of random order. Finding the solution requires looking at every number in the list. From this follows a simple algorithm, which can be stated in a high-level description in English prose, as:High-level description:
- If there are no numbers in the set then there is no highest number.
- Assume the first number in the set is the largest number in the set.
- For each remaining number in the set: if this number is larger than the current largest number, consider this number to be the largest number in the set.
- When there are no numbers left in the set to iterate over, consider the current largest number to be the largest number of the set.
Written in prose but much closer to the high-level language of a computer program, the following is the more formal coding of the algorithm in pseudocode or pidgin code:
Input: A list of numbers L.
Output: The largest number in the list L.
if L.size = 0 return null
largest ← L
for each item in L, do
if item > largest, then
largest ← item
return largest
Euclid's algorithm
's algorithm to compute the greatest common divisor to two numbers appears as Proposition II in Book VII of his Elements. Euclid poses the problem thus: "Given two numbers not prime to one another, to find their greatest common measure". He defines "A number a multitude composed of units": a counting number, a positive integer not including zero. To "measure" is to place a shorter measuring length s successively along longer length l until the remaining portion r is less than the shorter length s. In modern words, remainder r = l − q×s, q being the quotient, or remainder r is the "modulus", the integer-fractional part left over after the division.For Euclid's method to succeed, the starting lengths must satisfy two requirements: the lengths must not be zero, AND the subtraction must be “proper”; i.e., a test must guarantee that the smaller of the two numbers is subtracted from the larger.
Euclid's original proof adds a third requirement: the two lengths must not be prime to one another. Euclid stipulated this so that he could construct a reductio ad absurdum proof that the two numbers' common measure is in fact the greatest. While Nicomachus' algorithm is the same as Euclid's, when the numbers are prime to one another, it yields the number "1" for their common measure. So, to be precise, the following is really Nicomachus' algorithm.
Computer language for Euclid's algorithm
Only a few instruction types are required to execute Euclid's algorithm—some logical tests, unconditional GOTO, assignment, and subtraction.- A location is symbolized by upper case letter, e.g. S, A, etc.
- The varying quantity in a location is written in lower case letter and associated with the location's name. For example, location L at the start might contain the number l = 3009.
An inelegant program for Euclid's algorithm
INPUT:
:
INPUT L, S
:
R ← L
E0:
:
IF R > S THEN
the contents of L is the larger number so skip over the exchange-steps [|4], [|5] and 6:
GOTO step [|6]
ELSE
swap the contents of R and S.
L ← R.
R ← S
S ← L
E1: : Until the remaining length r in R is less than the shorter length s in S, repeatedly subtract the measuring number s in S from the remaining length r in R.
IF S > R THEN
done measuring so
GOTO [|10]
ELSE
measure again,
R ← R − S
:
GOTO [|7].
E2: : EITHER the last measure was exact, the remainder in R is zero, and the program can halt, OR the algorithm must continue: the last measure left a remainder in R less than measuring number in S.
IF R = 0 THEN
done so
GOTO [|step 15]
ELSE
CONTINUE TO [|step 11],
E3: : The nut of Euclid's algorithm. Use remainder r to measure what was previously smaller number s; L serves as a temporary location.
L ← R
R ← S
S ← L
:
GOTO 7
OUTPUT:
:
PRINT S
DONE:
HALT, END, STOP.
An elegant program for Euclid's algorithm
The flowchart of "Elegant" can be found at the top of this article. In the Basic language, the steps are numbered, and the instruction5 REM Euclid's algorithm for greatest common divisor
6 PRINT "Type two integers greater than 0"
10 INPUT A,B
20 IF B=0 THEN GOTO 80
30 IF A > B THEN GOTO 60
40 LET B=B-A
50 GOTO 20
60 LET A=A-B
70 GOTO 20
80 PRINT A
90 END
How "Elegant" works: In place of an outer "Euclid loop", "Elegant" shifts back and forth between two "co-loops", an A > B loop that computes A ← A − B, and a B ≤ A loop that computes B ← B − A. This works because, when at last the minuend M is less than or equal to the subtrahend S, the minuend can become s and the subtrahend can become the new r ; in other words the "sense" of the subtraction reverses.
The following version can be used with object-oriented languages:
// Euclid's algorithm for greatest common divisor
int euclidAlgorithm
Testing the Euclid algorithms
Does an algorithm do what its author wants it to do? A few test cases usually give some confidence in the core functionality. But tests are not enough. For test cases, one source uses 3009 and 884. Knuth suggested 40902, 24140. Another interesting case is the two relatively prime numbers 14157 and 5950.But "exceptional cases" must be identified and tested. Will "Inelegant" perform properly when R > S, S > R, R = S? Ditto for "Elegant": B > A, A > B, A = B?. What happens when one number is zero, both numbers are zero? What happens if negative numbers are entered? Fractional numbers? If the input numbers, i.e. the domain of the function computed by the algorithm/program, is to include only positive integers including zero, then the failures at zero indicate that the algorithm is a partial function rather than a total function. A notable failure due to exceptions is the Ariane 5 Flight 501 rocket failure.
Proof of program correctness by use of mathematical induction: Knuth demonstrates the application of mathematical induction to an "extended" version of Euclid's algorithm, and he proposes "a general method applicable to proving the validity of any algorithm". Tausworthe proposes that a measure of the complexity of a program be the length of its correctness proof.
Measuring and improving the Euclid algorithms
Elegance versus goodness : With only six core instructions, "Elegant" is the clear winner, compared to "Inelegant" at thirteen instructions. However, "Inelegant" is faster. Algorithm analysis indicates why this is the case: "Elegant" does two conditional tests in every subtraction loop, whereas "Inelegant" only does one. As the algorithm requires many loop-throughs, on average much time is wasted doing a "B = 0?" test that is needed only after the remainder is computed.Can the algorithms be improved?: Once the programmer judges a program "fit" and "effective"—that is, it computes the function intended by its author—then the question becomes, can it be improved?
The compactness of "Inelegant" can be improved by the elimination of five steps. But Chaitin proved that compacting an algorithm cannot be automated by a generalized algorithm; rather, it can only be done heuristically; i.e., by exhaustive search, trial and error, cleverness, insight, application of inductive reasoning, etc. Observe that steps 4, 5 and 6 are repeated in steps 11, 12 and 13. Comparison with "Elegant" provides a hint that these steps, together with steps 2 and 3, can be eliminated. This reduces the number of core instructions from thirteen to eight, which makes it "more elegant" than "Elegant", at nine steps.
The speed of "Elegant" can be improved by moving the "B=0?" test outside of the two subtraction loops. This change calls for the addition of three instructions. Now "Elegant" computes the example-numbers faster; whether this is always the case for any given A, B, and R, S would require a detailed analysis.
Algorithmic analysis
It is frequently important to know how much of a particular resource is theoretically required for a given algorithm. Methods have been developed for the analysis of algorithms to obtain such quantitative answers ; for example, the sorting algorithm above has a time requirement of O, using the big O notation with n as the length of the list. At all times the algorithm only needs to remember two values: the largest number found so far, and its current position in the input list. Therefore, it is said to have a space requirement of O, if the space required to store the input numbers is not counted, or O if it is counted.Different algorithms may complete the same task with a different set of instructions in less or more time, space, or 'effort' than others. For example, a binary search algorithm outperforms a sequential search when used for table lookups on sorted lists or arrays.
Formal versus empirical
The analysis, and study of algorithms is a discipline of computer science, and is often practiced abstractly without the use of a specific programming language or implementation. In this sense, algorithm analysis resembles other mathematical disciplines in that it focuses on the underlying properties of the algorithm and not on the specifics of any particular implementation. Usually pseudocode is used for analysis as it is the simplest and most general representation. However, ultimately, most algorithms are usually implemented on particular hardware/software platforms and their algorithmic efficiency is eventually put to the test using real code. For the solution of a "one off" problem, the efficiency of a particular algorithm may not have significant consequences but for algorithms designed for fast interactive, commercial or long life scientific usage it may be critical. Scaling from small n to large n frequently exposes inefficient algorithms that are otherwise benign.Empirical testing is useful because it may uncover unexpected interactions that affect performance. Benchmarks may be used to compare before/after potential improvements to an algorithm after program optimization.
Empirical tests cannot replace formal analysis, though, and are not trivial to perform in a fair manner.
Execution efficiency
To illustrate the potential improvements possible even in well-established algorithms, a recent significant innovation, relating to FFT algorithms, can decrease processing time up to 1,000 times for applications like medical imaging. In general, speed improvements depend on special properties of the problem, which are very common in practical applications. Speedups of this magnitude enable computing devices that make extensive use of image processing to consume less power.Classification
There are various ways to classify algorithms, each with its own merits.By implementation
One way to classify algorithms is by implementation means.; Recursion
; Logical
; Serial, parallel or distributed
; Deterministic or non-deterministic
; Exact or approximate
; Quantum algorithm
By design paradigm
Another way of classifying algorithms is by their design methodology or paradigm. There is a certain number of paradigms, each different from the other. Furthermore, each of these categories includes many different types of algorithms. Some common paradigms are:; Brute-force or exhaustive search
; Divide and conquer
; Search and enumeration
;Randomized algorithm
- Monte Carlo algorithms return a correct answer with high-probability. E.g. RP is the subclass of these that run in polynomial time.
- Las Vegas algorithms always return the correct answer, but their running time is only probabilistically bound, e.g. ZPP.
; Back tracking
Optimization problems
For optimization problems there is a more specific classification of algorithms; an algorithm for such problems may fall into one or more of the general categories described above as well as into one of the following:; Linear programming
; Dynamic programming
; The greedy method
;The heuristic method
By field of study
Every field of science has its own problems and needs efficient algorithms. Related problems in one field are often studied together. Some example classes are search algorithms, sorting algorithms, merge algorithms, numerical algorithms, graph algorithms, string algorithms, computational geometric algorithms, combinatorial algorithms, medical algorithms, machine learning, cryptography, data compression algorithms and parsing techniques.Fields tend to overlap with each other, and algorithm advances in one field may improve those of other, sometimes completely unrelated, fields. For example, dynamic programming was invented for optimization of resource consumption in industry but is now used in solving a broad range of problems in many fields.
By complexity
Algorithms can be classified by the amount of time they need to complete compared to their input size:- Constant time: if the time needed by the algorithm is the same, regardless of the input size. E.g. an access to an array element.
- Logarithmic time: if the time is a logarithmic function of the input size. E.g. binary search algorithm.
- Linear time: if the time is proportional to the input size. E.g. the traverse of a list.
- Polynomial time: if the time is a power of the input size. E.g. the bubble sort algorithm has quadratic time complexity.
- Exponential time: if the time is an exponential function of the input size. E.g. Brute-force search.
Continuous algorithms
The adjective "continuous" when applied to the word "algorithm" can mean:- An algorithm operating on data that represents continuous quantities, even though this data is represented by discrete approximations—such algorithms are studied in numerical analysis; or
- An algorithm in the form of a differential equation that operates continuously on the data, running on an analog computer.
Legal issues
Additionally, some cryptographic algorithms have export restrictions.
History: Development of the notion of "algorithm"
Ancient Near East
The earliest evidence of algorithms is found in the Babylonian mathematics of ancient Mesopotamia. A Sumerian clay tablet found in Shuruppak near Baghdad and dated to circa 2500 BC described the earliest division algorithm. During the Hammurabi dynasty circa 1800-1600 BC, Babylonian clay tablets described algorithms for computing formulas. Algorithms were also used in Babylonian astronomy. Babylonian clay tablets describe and employ algorithmic procedures to compute the time and place of significant astronomical events.Algorithms for arithmetic are also found in ancient Egyptian mathematics, dating back to the Rhind Mathematical Papyrus circa 1550 BC. Algorithms were later used in ancient Hellenistic mathematics. Two examples are the Sieve of Eratosthenes, which was described in the Introduction to Arithmetic by Nicomachus, and the Euclidean algorithm, which was first described in Euclid's Elements.
Discrete and distinguishable symbols
Tally-marks: To keep track of their flocks, their sacks of grain and their money the ancients used tallying: accumulating stones or marks scratched on sticks or making discrete symbols in clay. Through the Babylonian and Egyptian use of marks and symbols, eventually Roman numerals and the abacus evolved. Tally marks appear prominently in unary numeral system arithmetic used in Turing machine and Post–Turing machine computations.Manipulation of symbols as "place holders" for numbers: algebra
, a Persian mathematician, wrote the Al-jabr in the 9th century. The terms "algorism" and "algorithm" are derived from the name al-Khwārizmī, while the term "algebra" is derived from the book Al-jabr. In Europe, the word "algorithm" was originally used to refer to the sets of rules and techniques used by Al-Khwarizmi to solve algebraic equations, before later being generalized to refer to any set of rules or techniques. This eventually culminated in Leibniz's notion of the calculus ratiocinator :Cryptographic algorithms
The first cryptographic algorithm for deciphering encrypted code was developed by Al-Kindi, a 9th-century Arab mathematician, in A Manuscript On Deciphering Cryptographic Messages. He gave the first description of cryptanalysis by frequency analysis, the earliest codebreaking algorithm.Mechanical contrivances with discrete states
The clock: Bolter credits the invention of the weight-driven clock as "The key invention ", in particular, the verge escapement that provides us with the tick and tock of a mechanical clock. "The accurate automatic machine" led immediately to "mechanical automata" beginning in the 13th century and finally to "computational machines"—the difference engine and analytical engines of Charles Babbage and Countess Ada Lovelace, mid-19th century. Lovelace is credited with the first creation of an algorithm intended for processing on a computer—Babbage's analytical engine, the first device considered a real Turing-complete computer instead of just a calculator—and is sometimes called "history's first programmer" as a result, though a full implementation of Babbage's second device would not be realized until decades after her lifetime.Logical machines 1870 – Stanley Jevons' "logical abacus" and "logical machine": The technical problem was to reduce Boolean equations when presented in a form similar to what is now known as Karnaugh maps. Jevons describes first a simple "abacus" of "slips of wood furnished with pins, contrived so that any part or class of the combinations can be picked out mechanically... More recently, however, I have reduced the system to a completely mechanical form, and have thus embodied the whole of the indirect process of inference in what may be called a Logical Machine" His machine came equipped with "certain moveable wooden rods" and "at the foot are 21 keys like those of a piano ...". With this machine he could analyze a "syllogism or any other simple logical argument".
This machine he displayed in 1870 before the Fellows of the Royal Society. Another logician John Venn, however, in his 1881 Symbolic Logic, turned a jaundiced eye to this effort: "I have no high estimate myself of the interest or importance of what are sometimes called logical machines... it does not seem to me that any contrivances at present known or likely to be discovered really deserve the name of logical machines"; see more at Algorithm characterizations. But not to be outdone he too presented "a plan somewhat analogous, I apprehend, to Prof. Jevon's abacus... gain, corresponding to Prof. Jevons's logical machine, the following contrivance may be described. I prefer to call it merely a logical-diagram machine... but I suppose that it could do very completely all that can be rationally expected of any logical machine".
Jacquard loom, Hollerith punch cards, telegraphy and telephony – the electromechanical relay: Bell and Newell indicate that the Jacquard loom, precursor to Hollerith cards, and "telephone switching technologies" were the roots of a tree leading to the development of the first computers. By the mid-19th century the telegraph, the precursor of the telephone, was in use throughout the world, its discrete and distinguishable encoding of letters as "dots and dashes" a common sound. By the late 19th century the ticker tape was in use, as was the use of Hollerith cards in the 1890 U.S. census. Then came the teleprinter with its punched-paper use of Baudot code on tape.
Telephone-switching networks of electromechanical relays was behind the work of George Stibitz, the inventor of the digital adding device. As he worked in Bell Laboratories, he observed the "burdensome' use of mechanical calculators with gears. "He went home one evening in 1937 intending to test his idea... When the tinkering was over, Stibitz had constructed a binary adding device".
Davis observes the particular importance of the electromechanical relay :
Mathematics during the 19th century up to the mid-20th century
Symbols and rules: In rapid succession, the mathematics of George Boole, Gottlob Frege, and Giuseppe Peano reduced arithmetic to a sequence of symbols manipulated by rules. Peano's The principles of arithmetic, presented by a new method was "the first attempt at an axiomatization of mathematics in a symbolic language".But Heijenoort gives Frege this kudos: Frege's is "perhaps the most important single work ever written in logic.... in which we see a " 'formula language', that is a lingua characterica, a language written with special symbols, "for pure thought", that is, free from rhetorical embellishments... constructed from specific symbols that are manipulated according to definite rules". The work of Frege was further simplified and amplified by Alfred North Whitehead and Bertrand Russell in their Principia Mathematica.
The paradoxes: At the same time a number of disturbing paradoxes appeared in the literature, in particular, the Burali-Forti paradox, the Russell paradox, and the Richard Paradox. The resultant considerations led to Kurt Gödel's paper —he specifically cites the paradox of the liar—that completely reduces rules of recursion to numbers.
Effective calculability: In an effort to solve the Entscheidungsproblem defined precisely by Hilbert in 1928, mathematicians first set about to define what was meant by an "effective method" or "effective calculation" or "effective calculability". In rapid succession the following appeared: Alonzo Church, Stephen Kleene and J.B. Rosser's λ-calculus a finely honed definition of "general recursion" from the work of Gödel acting on suggestions of Jacques Herbrand and subsequent simplifications by Kleene. Church's proof that the Entscheidungsproblem was unsolvable, Emil Post's definition of effective calculability as a worker mindlessly following a list of instructions to move left or right through a sequence of rooms and while there either mark or erase a paper or observe the paper and make a yes-no decision about the next instruction. Alan Turing's proof of that the Entscheidungsproblem was unsolvable by use of his "a- machine"—in effect almost identical to Post's "formulation", J. Barkley Rosser's definition of "effective method" in terms of "a machine". S.C. Kleene's proposal of a precursor to "Church thesis" that he called "Thesis I", and a few years later Kleene's renaming his Thesis "Church's Thesis" and proposing "Turing's Thesis".
Emil Post (1936) and Alan Turing (1936–37, 1939)
described the actions of a "computer" as follows:His symbol space would be
Alan Turing's work preceded that of Stibitz ; it is unknown whether Stibitz knew of the work of Turing. Turing's biographer believed that Turing's use of a typewriter-like model derived from a youthful interest: "Alan had dreamt of inventing typewriters as a boy; Mrs. Turing had a typewriter, and he could well have begun by asking himself what was meant by calling a typewriter 'mechanical'". Given the prevalence of Morse code and telegraphy, ticker tape machines, and teletypewriters we might conjecture that all were influences.
Turing—his model of computation is now called a Turing machine—begins, as did Post, with an analysis of a human computer that he whittles down to a simple set of basic motions and "states of mind". But he continues a step further and creates a machine as a model of computation of numbers.
Turing's reduction yields the following:
"It may be that some of these change necessarily invoke a change of state of mind. The most general single operation must, therefore, be taken to be one of the following:
A few years later, Turing expanded his analysis with this forceful expression of it:
J.B. Rosser (1939) and S.C. Kleene (1943)
defined an 'effective method' in the following manner :Rosser's footnote No. 5 references the work of Church and Kleene and their definition of λ-definability, in particular Church's use of it in his An Unsolvable Problem of Elementary Number Theory ; Herbrand and Gödel and their use of recursion in particular Gödel's use in his famous paper On Formally Undecidable Propositions of Principia Mathematica and Related Systems I ; and Post and Turing in their mechanism-models of computation.
Stephen C. Kleene defined as his now-famous "Thesis I" known as the Church–Turing thesis. But he did this in the following context :