Montgomery curve


In mathematics the Montgomery curve is a form of elliptic curve, different from the usual Weierstrass form, introduced by Peter L. Montgomery in 1987. It is used for certain computations, and in particular in different cryptography applications.

Definition

A Montgomery curve over a field is defined by the equation
for certain and with.
Generally this curve is considered over a finite field K with characteristic different from 2 and with and, but they are also considered over the rationals with the same restrictions for and.

Montgomery arithmetic

It is possible to do some "operations" between the points of an elliptic curve: "adding" two points consists of finding a third one such that ; "doubling" a point consists of computing and below.
A point on the elliptic curve in the Montgomery form can be represented in Montgomery coordinates, where are projective coordinates and for.
Notice that this kind of representation for a point loses information: indeed, in this case, there is no distinction between the affine points and because they are both given by the point. However, with this representation it is possible to obtain multiples of points, that is, given, to compute.
Now, considering the two points and : their sum is given by the point whose coordinates are:
If, then the operation becomes a "doubling"; the coordinates of are given by the following equations:
The first operation considered above has a time-cost of 3M+2S, where M denotes the multiplication between two general elements of the field on which the elliptic curve is defined, while S denotes squaring of a general element of the field.
The second operation has a time-cost of 2M + 2S + 1D, where D denotes the multiplication of a general element by a constant; notice that the constant is, so can be chosen in order to have a small D.

Algorithm and example

The following algorithm represents a doubling of a point on an elliptic curve in the Montgomery form.
It is assumed that. The cost of this implementation is 1M + 2S + 1*A + 3add + 1*4. Here M denotes the multiplications required, S indicates the squarings, and a refers to the multiplication by A.

Example

Let be a point on the curve.
In coordinates, with,.
Then:
The result is the point such that.

Addition

Given two points, on the Montgomery curve in affine coordinates, the point represents, geometrically the third point of intersection between and the line passing through and. It is possible to find the coordinates of, in the following way:
1) consider a generic line in the affine plane and let it pass through and , in this way, one obtains and ;
2) intersect the line with the curve, substituting the variable in the curve equation with ; the following equation of third degree is obtained:
As it has been observed before, this equation has three solutions that correspond to the coordinates of, and. In particular this equation can be re-written as:
3) Comparing the coefficients of the two identical equations given above, in particular the coefficients of the terms of second degree, one gets:
So, can be written in terms of,,,, as:
4) To find the coordinate of the point it is sufficient to substitute the value in the line. Notice that this will not give the point directly. Indeed, with this method one find the coordinates of the point such that, but if one needs the resulting point of the sum between and, then it is necessary to observe that: if and only if. So, given the point, it is necessary to find, but this can be done easily by changing the sign to the coordinate of. In other words, it will be necessary to change the sign of the coordinate obtained by substituting the value in the equation of the line.
Resuming, the coordinates of the point, are:

Doubling

Given a point on the Montgomery curve, the point represents geometrically the third point of intersection between the curve and the line tangent to ; so, to find the coordinates of the point it is sufficient to follow the same method given in the addition formula; however, in this case, the line y = lx + m has to be tangent to the curve at, so, if with
then the value of l, which represents the slope of the line, is given by:
by the implicit function theorem.
So and the coordinates of the point, are:

Equivalence with twisted Edwards curves

Let be a field with characteristic different from 2.
Let be an elliptic curve in the Montgomery form:
with,
and let be an elliptic curve in the twisted Edwards form:
with
The following theorem shows the birational equivalence between Montgomery curves and twisted Edwards curve:
Theorem Every twisted Edwards curve is birationally equivalent to a Montgomery curve over.
In particular, the twisted Edwards curve is birationally equivalent to the Montgomery curve where, and.
The map:
is a birational equivalence from to, with inverse:
Notice that this equivalence between the two curves is not valid everywhere: indeed the map is not defined at the points or of the.

Equivalence with Weierstrass curves

Any elliptic curve can be written in Weierstrass form. In particular, the elliptic curve in the Montgomery form
can be transformed in the following way:
divide each term of the equation for by, and substitute the variables x and y, with and respectively, to get the equation
To obtain a short Weierstrass form from here, it is sufficient to replace u with the variable :
finally, this gives the equation:
Hence the mapping is given as
In contrast, an elliptic curve over base field in Weierstrass form
can be converted to Montgomery form if and only if has order divisible by four and satisfies the following conditions:
  1. has at least one root ; and
  2. is a quadratic residue in.
When these conditions are satisfied, then for we have the mapping