Mirror
A mirror or reflector is an object such that each narrow beam of light that incides on its surface bounces in a single direction. This property, called specular reflection, distinguishes a mirror from objects that scatter light in many directions, let it pass through them, or absorb it.
Most mirrors behave as such only for certain ranges of wavelength, direction, and polarization of the incident light; most commonly for visible light, but also for other regions of the electromagnetic spectrum from X-rays to radio waves. A mirror will generally reflect only a fraction of the incident light; even the best mirrors may scatter, absorb, or transmit a small portion of it. If the mirror's width is only a few times the wavelength of the light, a significant part of the light will also be diffracted instead. An object that is a mirror when examined at a small scale may seem to be scattering light when examined at a larger scale.
When looking at a mirror, one will see a mirror image or reflected image of objects in the environment, formed by light emitted or scattered by them and reflected by the mirror towards one's eyes. This effect gives the illusion that those objects are behind the mirror, or in front of it. A plane mirror will yield a real-looking undistorted image, while a curved mirror may distort, magnify, or reduce the image in various ways.
A mirror is commonly used for inspecting oneself, such as during personal grooming; hence the old-fashioned name looking glass. This use, which dates from the Prehistory, overlaps with uses in decoration and architecture. Mirrors are also used to view other items that are not directly visible because of obstructions; examples include rear-view mirrors in vehicles, security mirrors in or around buildings, and dentist's mirrors. Mirrors are also used in optical and scientific apparatus such as telescopes, lasers, cameras, periscopes, and industrial machinery.
The terms "mirror" and "reflector" can be used for devices that reflect other types of radiation according to the same laws. An acoustic mirror reflects sound waves, and may be used for applications such as directional microphones, atmospheric studies, sonar, and sea floor mapping. An atomic mirror reflects matter waves, and can be used for atomic interferometry and atomic holography.
History
Prehistory
The first mirrors used by humans were most likely pools of dark, still water, or water collected in a primitive vessel of some sort. The requirements for making a good mirror are a surface with a very high degree of flatness, and a surface roughness smaller than the wavelength of the light.The earliest manufactured mirrors were pieces of polished stone such as obsidian, a naturally occurring volcanic glass. Examples of obsidian mirrors found in Anatolia have been dated to around 6000 BC. Mirrors of polished copper were crafted in Mesopotamia from 4000 BC, and in ancient Egypt from around 3000 BC. Polished stone mirrors from Central and South America date from around 2000 BC onwards.
Bronze Age to Early Middle Age
By the Bronze Age most cultures were using mirrors made from polished discs of bronze, copper, silver, or other metals. In China, bronze mirrors were manufactured from around 2000 BC, some of the earliest bronze and copper examples being produced by the Qijia culture. Such metal mirrors remained the norm through to Greco-Roman Antiquity and throughout the Middle Ages in Europe. During the Roman Empire silver mirrors were in wide use even by maidservants.Speculum metal is a highly reflective alloy of copper and tin that has been used for mirrors until a couple of centuries ago. Such mirrors may have originated in China and India. Mirrors of speculum metal or any precious metal were hard to produce and were only owned by the wealthy.
Common metal mirrors tarnished and required frequent polishing. Bronze mirrors had low reflectivity and poor color rendering, and stone mirrors were much worse in this regard. These defects explain the New Testament reference in 1 Corinthians 13 to seeing "as in a mirror, darkly."
The Greek philosopher Socrates, of "know thyself" fame, urged young people to look at themselves in mirrors so that, if they were beautiful, they would become worthy of their beauty, and if they were ugly, they would know how to hide their disgrace through learning.
Glass began to be used for mirrors in the 1st century CE, with the development of soda-lime glass and glass blowing. The Roman scholar Pliny the Elder claims that artisans in Sidon were producing glass mirrors coated with lead or gold leaf in the back. The metal provided good reflectivity, and the glass provided a smooth surface and protected the metal from scrathes and tarnishing. However, there is no archeological evidence of glass mirrors before the third century.
These early glass mirrors were made by blowing a glass bubble, and then cutting off a small circular section from 10 to 20 cm in diameter. Their surface was either concave or convex, and imperfections tended to distort the image. Lead-coated mirrors were very thin to prevent cracking by the heat of the molten metal. Due to their poor quality, high cost, and small size, solid-metal mirrors, primarily of steel, remained in common use until the late nineteenth century.
Silver-coated metal mirrors were developed in China as early as 500 CE. The bare metal was coated with an amalgam, then heated it until the mercury boiled away.
Middle Ages and Renaissance
The evolution of glass mirrors in the Middle Ages followed improvements in glassmaking technology. Glassmakers in France made flat glass plates by blowing glass bubbles, spinning them rapidly to flatten them, and cutting rectangles out of them. A better method, developed in Germany and perfected in Venice by the 16th century, was to blow a cylinder of glass, cut off the ends, slice it along its length, and unroll it onto a flat hot plate. Venetian glassmakers also adopted lead glass for mirrors, because of its crystal-clarity and its easier workability. By the 11th century, glass mirrors were being produced in Moorish Spain.During the early European Renaissance, a fire-gilding technique developed to produce an even and highly reflective tin coating for glass mirrors. The back of the glass was coated with a tin-mercury amalgam, and the mercury was then evaporated by heating the piece. This process caused less thermal shock to the glass than the older molten-lead method. The date and location of the discovery is unknown, but by the 16th century Venice was a center of mirror production using this technique. These Venetian mirrors were up to square.
For a century, Venice retained the monopoly of the tin amalgam technique. Venetian mirrors in richly decorated frames served as luxury decorations for palaces throughout Europe, and were very expensive. For example, in the late seventeenth century, the Countess de Fiesque was reported to have traded an entire wheat farm for a mirror, considering it a bargain. However, by the end of that century the secret was leaked through to industrial espionage. French workshops succeeded in large-scale industrialization of the process, eventually making mirrors affordable to the masses, in spite of the toxicity of mercury's vapor.
Industrial Revolution
The invention of the ribbon machine in the late Industrial Revolution allowed modern glass panes to be produced in bulk. The Saint-Gobain factory, founded by royal initiative in France, was an important manufacturer, and Bohemian and German glass, often rather cheaper, was also important.The invention of the silvered-glass mirror is credited to German chemist Justus von Liebig in 1835. His wet deposition process involved the deposition of a thin layer of metallic silver onto glass through the chemical reduction of silver nitrate. This silvering process was adapted for mass manufacturing and led to the greater availability of affordable mirrors.
Contemporary technologies
Currently mirrors are often produced by the wet deposition of silver, or sometimes nickel or chromium via electroplating directly onto the glass substrate.Glass mirrors for optical instruments are usually produced by vacuum deposition methods. These techniques can be traced to observations in the 1920s and 1930s that metal was being ejected from electrodes in gas discharge lamps and condensed on the glass walls forming a mirror-like coating. The phenomenon, called sputtering, was developed into an industrial metal-coating method with the development of semiconductor technology in the 1970s.
A similar phenomenon had been observed with incandescent light bulbs: the metal in the hot filament would slowly sublimate and condense on the bulb's walls. This phenomenon was developed into the method of evaporation coating by Pohl and Pringsheim in 1912. John D. Strong used evaporation coating to make the first aluminum-coated telescope mirrors in the 1930s. The first dielectric mirror was created in 1937 by Auwarter using evaporated rhodium.
The metal coating of glass mirrors is usually protected from abrasion and corrosion by a layer of paint applied over it. Mirrors for optical instruments often have the metal layer on the front face, so that the light does not have to cross the glass twice. In these mirrors, the metal may be protected by a thin transparent coating of anon-metallic material. The first metallic mirror to be enhanced with a dielectric coating of silicon dioxide was created by Hass in 1937. In 1939 at the Schott Glass company, Walter Geffcken invented the first dielectric mirrors to use multilayer coatings.
Burning mirrors
The Greek in Classical Antiquity were familiar with the use of mirrors to concentrate light. Parabolic mirrors were described and studied by the mathematician Diocles in his work On Burning Mirrors. Ptolemy conducted a number of experiments with curved polished iron mirrors, and discussed plane, convex spherical, and concave spherical mirrors in his Optics.Parabolic mirrors were also described by the Caliphate mathematician Ibn Sahl in the tenth century. The scholar Ibn al-Haytham discussed concave and convex mirrors in both cylindrical and spherical geometries, carried out a number of experiments with mirrors, and solved the problem of finding the point on a convex mirror at which a ray coming from one point is reflected to another point.
Types of mirrors
Mirrors can be classified in many ways; including by shape, support and reflective materials, manufacturing methods, and intended application.By shape
Typical mirror shapes are planar, convex, and concave.The surface of curved mirrors is often a part of a sphere, for ease of fabrication. Mirrors that are meant to precisely concentrate parallel rays of light into a point are usually made in the shape of a paraboloid of revolution instead; they are used in telescopes, in antennas to communicate with broadcast satellites, and in solar furnaces. A segmented mirror, consisting of multiple flat or curved mirrors, properly placed and oriented, may be used instead.
Mirrors that are intended to concentrate sunlight onto a long pipe may be a circular cylinder or of a parabolic cylinder.
By structural material
The most common structural material for mirrors is glass, due to its transparency, ease of fabrication, rigidity, hardness, and ability to take a smooth finish.Back-silvered mirrors
The most common mirrors consist of a plate of transparent glass, with a thin reflective layer on the back backed by a coating that protects that layer against abrasion, tarnishing, and corrosion. The glass is usually soda-lime glass, but lead glass may be used for decorative effects, and other transparent materials may be used for specific applications.A plate of transparent plastic may be used instead of glass, for lighter weight or impact resistance. Alternatively, a flexible transparent plastic film may be bonded to the front and/or back surface of the mirror, to prevent injuries in case the mirror is broken. Lettering or decorative designs may be printed on the front face of the glass, or formed on the reflective layer. The front surface may have an anti-reflection coating.
Front-silvered mirrors
Mirrors which are reflective on the front surface may be made of any rigid material. The supporting material does not need to be transparent, but telescope mirrors often use glass anyway. Often a protective transparent coating is added on top of the reflecting layer, to protect it against abrasion, tarnishing, and corrosion, or to absorb certain wavelengths.Flexible mirrors
Thin flexible plastic mirrors are sometimes used for safety, since they cannot shatter or produce sharp flakes. Their flatness is achieved by stretching them on a rigid frame. These usually consist of a layer of evaporated aluminum between two thin layers of transparent plastic.By reflective material
In common mirrors, the reflective layer is usually some metal like silver, tin, nickel, or chromium, deposited by a wet process; or aluminum, deposited by sputtering or evaporation in vacuum. The reflective layer may also be made of one or more layers of transparent materials with suitable indices of refraction.The structural material may be a metal, in which case the reflecting layer may be just the surface of the same. Metal concave dishes are often used to reflect infrared light or microwaves. Some telescopes, such as the Sky Mirror and liquid metal telescopes, as well as mirrors for high-power laser cutting, also use all-metal mirrors.
Mirrors that reflect only part of the light, while transmitting some of the rest, can be made with very thin metal layers or suitable combinations of dielectric layers. They are typically used as beamsplitters. A dichroic mirror, in particular, has surface that reflects certain wavelengths of light, while letting other wavelengths pass through. A cold mirror is a dichroic mirror that efficiently reflects the entire visible light spectrum while transmitting infrared wavelengths. A hot mirror is the opposite: it reflects infrared light while transmitting visible light. Dichroic mirrors are often used as filters to remove undesired components of the light in cameras and measuring instruments.
An active mirror will produce reflected beams that have more power than the incident beams. They are used to make disk lasers. The amplification is typically over a narrow range of wavelengths, and requires an external source of power.
In X-ray telescopes, the X-rays incide on a highly precise metal surface at almost grazing angles, and only a small fraction of the rays are reflected. In flying relativistic mirrors conceived for X-ray lasers, the reflecting surface is a spherical shockwave created in a in a low-density plasma by a very intense laser-pulse, and moving at an extremely high velocity.
A phase-conjugating mirror uses nonlinear optics to reverse the phase difference between incident beams. Such mirrors may be used, for example, for combination and self-guiding of laser beams and correction of atmospheric distortions in imaging systems.
Physical principles
When a sufficiently narrow beam of light is reflected at a point of a surface, the surface's normal direction will be the bisector of the angle formed by the two beams at that point. That is, the direction vector towards the incident beams's source, the normal vector, and direction vector of the reflected beam will be coplanar, and the angle between and will be equal to the angle of incidence between and, but of opposite sign.This property can be explained by the physics of an electromagnetic plane wave that is incident to a flat surface that is electrically conductive or where the speed of light changes abruptly, as between two materials with different indices of refraction.
- When parallel beams of light are reflected on a plane surface, the reflected rays will be parallel too.
- If the reflecting surface is concave, the reflected beams will be convergent, at least to some extent and for some distance from the surface.
- A convex mirror, on the other hand, will reflect parallel rays towards divergent directions.
A convex parabolic mirror, on the other hand, will reflect rays that are parallel to its axis into rays that seem to emanate from the focus of the surface, behind the mirror. Conversely, it will reflect incoming rays that converge toward that point into rays that are parallel to the axis. A convex mirror that is part of a prolate ellipsoid will reflect rays that converge towards one focus into divergent rays that seem to emanate from the other focus.
Spherical mirrors do not reflect parallel rays to rays that converge to or diverge from a single point, or vice-versa, due to spherical aberration. However, a spherical mirror whose diameter is sufficiently small compared to the sphere's radius will behave very similarly to a parabolic mirror whose axis goes through the mirror's center and the center of that sphere; so that spherical mirrors can substitute for parabolic ones in many applications.
A similar aberration occurs with parabolic mirrors when the incident rays are parallel among themselves but not parallel to the mirror's axis, or are divergent from a point that is not the focus — as when trying to form an image of an objet that is near the mirror or spans a wide angle as seen from it. However, this aberration can be sufficiently small if the object image is sufficiently far from the mirror and spans a sufficiently small angle around its axis.
Grange, East Yorkshire, UK
Mirror images
Objects viewed in a mirror will appear laterally inverted, but not vertically inverted. However, a mirror does not usually "swap" left and right any more than it swaps top and bottom. A mirror typically reverses the forward/backward axis. To be precise, it reverses the object in the direction perpendicular to the mirror surface. Because left and right are defined relative to front-back and top-bottom, the "flipping" of front and back results in the perception of a left-right reversal in the image.Looking at an image of oneself with the front-back axis flipped results in the perception of an image with its left-right axis flipped. When reflected in the mirror, your right hand remains directly opposite your real right hand, but it is perceived as the left hand of your image. When a person looks into a mirror, the image is actually front-back reversed, which is an effect similar to the hollow-mask illusion. Notice that a mirror image is fundamentally different from the object and cannot be reproduced by simply rotating the object.
For things that may be considered as two-dimensional objects, front-back reversal cannot usually explain the observed reversal. In the same way that text on a piece of paper appears reversed if held up to a light and viewed from behind, text held facing a mirror will appear reversed, because the observer is behind the text. Another way to understand the reversals observed in images of objects that are effectively two-dimensional is that the inversion of left and right in a mirror is due to the way human beings turn their bodies. To turn from viewing the side of the object facing the mirror to view the reflection in the mirror requires the observer to look in the opposite direction. To look in another direction, human beings turn their heads about a vertical axis. This causes a left-right reversal in the image but not an up-down reversal.
Optical properties
Reflectivity
The reflectivity of a mirror is determined by the percentage of reflected light per the total of the incident light. The reflectivity may vary with wavelength. All or a portion of the light not reflected is absorbed by the mirror, while in some cases a portion may also transmit through. Although some small portion of the light will be absorbed by the coating, the reflectivity is usually higher for first-surface mirrors, eliminating both reflection and absorption losses from the substrate. The reflectivity is often determined by the type and thickness of the coating. When the thickness of the coating is sufficient to prevent transmission, all of the losses occur due to absorption. Aluminum is harder, less expensive, and more resistant to tarnishing than silver, and will reflect 85 to 90% of the light in the visible to near-ultraviolet range, but experiences a drop in its reflectance between 800 and 900 nm. Gold is very soft and easily scratched, costly, yet does not tarnish. Gold is greater than 96% reflective to near and far-infrared light between 800 and 12000 nm, but poorly reflects visible light with wavelengths shorter than 600 nm. Silver is expensive, soft, and quickly tarnishes, but has the highest reflectivity in the visual to near-infrared of any metal. Silver can reflect up to 98 or 99% of light to wavelengths as long as 2000 nm, but loses nearly all reflectivity at wavelengths shorter than 350 nm. Dielectric mirrors can reflect greater than 99.99% of light, but only for a narrow range of wavelengths, ranging from a bandwidth of only 10 nm to as wide as 100 nm for tunable lasers. However, dielectric coatings can also enhance the reflectivity of metallic coatings and protect them from scratching or tarnishing. Dielectric materials are typically very hard and relatively cheap, however the number of coats needed generally makes it an expensive process. In mirrors with low tolerances, the coating thickness may be reduced to save cost, and simply covered with paint to absorb transmission.Surface quality
Surface quality, or surface accuracy, measures the deviations from a perfect, ideal surface shape. Increasing the surface quality reduces distortion, artifacts, and aberration in images, and helps increase coherence, collimation, and reduce unwanted divergence in beams. For plane mirrors, this is often described in terms of flatness, while other surface shapes are compared to an ideal shape. The surface quality is typically measured with items like interferometers or optical flats, and are usually measured in wavelengths of light. These deviations can be much larger or much smaller than the surface roughness. A normal household-mirror made with float glass may have flatness tolerances as low as 9–14λ per inch, equating to a deviation of 5600 through 8800 nanometers from perfect flatness. Precision ground and polished mirrors intended for lasers or telescopes may have tolerances as high as λ/50 across the entire surface. The surface quality can be affected by factors such as temperature changes, internal stress in the substrate, or even bending effects that occur when combining materials with different coefficients of thermal expansion, similar to a bimetallic strip.Surface roughness
describes the texture of the surface, often in terms of the depth of the microscopic scratches left by the polishing operations. Surface roughness determines how much of the reflection is specular and how much diffuses, controlling how sharp or blurry the image will be.For perfectly specular reflection, the surface roughness must be kept smaller than the wavelength of the light. Microwaves, which sometimes have a wavelength greater than an inch can reflect specularly off a metal screen-door, continental ice-sheets, or desert sand, while visible light, having wavelengths of only a few hundred nanometers, must meet a very smooth surface to produce specular reflection. For wavelengths that are approaching or are even shorter than the diameter of the atoms, such as X-rays, specular reflection can only be produced by surfaces that are at a grazing incidence from the rays.
Surface roughness is typically measured in microns, wavelength, or grit size, with ~80,000–100,000 grit or ~½λ–¼λ being "optical quality".
Transmissivity
Transmissivity is determined by the percentage of light transmitted per the incident light. Transmissivity is usually the same from both first and second surfaces. The combined transmitted and reflected light, subtracted from the incident light, measures the amount absorbed by both the coating and substrate. For transmissive mirrors, such as one-way mirrors, beam splitters, or laser output couplers, the transmissivity of the mirror is an important consideration. The transmissivity of metallic coatings are often determined by their thickness. For precision beam-splitters or output couplers, the thickness of the coating must be kept at very high tolerances to transmit the proper amount of light. For dielectric mirrors, the thickness of the coat must always be kept to high tolerances, but it is often more the number of individual coats that determine the transmissivity. For the substrate, the material used must also have good transmissivity to the chosen wavelengths. Glass is a suitable substrate for most visible-light applications, but other substrates such as zinc selenide or synthetic sapphire may be used for infrared or ultraviolet wavelengths.Wedge
Wedge errors are caused by the deviation of the surfaces from perfect parallelism. An optical wedge is the angle formed between two plane-surfaces due to manufacturing errors or limitations, causing one edge of the mirror to be slightly thicker than the other. Nearly all mirrors and optics with parallel faces have some slight degree of wedge, which is usually measured in seconds or minutes of arc. For first-surface mirrors, wedges can introduce alignment deviations in mounting hardware. For second-surface or transmissive mirrors, wedges can have a prismatic effect on the light, deviating its trajectory or, to a very slight degree, its color, causing chromatic and other forms of aberration. In some instances, a slight wedge is desirable, such as in certain laser systems where stray reflections from the uncoated surface are better dispersed than reflected back through the medium.Surface defects
Surface defects are small-scale, discontinuous imperfections in the surface smoothness. Surface defects are larger than the surface roughness, but only affect small, localized portions of the entire surface. These are typically found as scratches, digs, pits, sleeks, edge chips, or blemishes in the coating. These defects are often an unavoidable side-effect of manufacturing limitations, both in cost and machine precision. If kept low enough, in most applications these defects will rarely have any adverse effect, unless the surface is located at an image plane where they will show up directly. For applications that require extremely low scattering of light, extremely high reflectance, or low absorption due to high energy-levels that could destroy the mirror, such as lasers or Fabry-Perot interferometers, the surface defects must be kept to a minimum.Manufacturing
Mirrors are usually manufactured by either polishing a naturally reflective material, such as speculum metal, or by applying a reflective coating to a suitable polished substrate.In some applications, generally those that are cost-sensitive or that require great durability, such as for mounting in a prison cell, mirrors may be made from a single, bulk material such as polished metal. However, metals consist of small crystals separated by grain boundaries that may prevent the surface from attaining optical smoothness and uniform reflectivity.
Coating
Silvering
The coating of glass with a reflective layer of a metal is generally called "silvering", even though the metal may not be silver. Currently the main processes are electroplating, "wet" chemical deposition, and vacuum deposition Front-coated metal mirrors achieve reflectivities of 90–95% when new.Dielectric coating
Applications requiring higher reflectivity or greater durability, where wide bandwidth is not essential, use dielectric coatings, which can achieve reflectivities as high as 99.997% over a limited range of wavelengths. Because they are often chemically stable and do not conduct electricity, dielectric coatings are almost always applied by methods of vacuum deposition, and most commonly by evaporation deposition. Because the coatings are usually transparent, absorption losses are negligible. Unlike with metals, the reflectivity of the individual dielectric-coatings is a function of Snell's law known as the Fresnel equations, determined by the difference in refractive index between layers. Therefore, the thickness and index of the coatings can be adjusted to be centered on any wavelength. Vacuum deposition can be achieved in a number of ways, including sputtering, evaporation deposition, arc deposition, reactive-gas deposition, and ion plating, among many others.Shaping and polishing
Tolerances
Mirrors can be manufactured to a wide range of engineering tolerances, including reflectivity, surface quality, surface roughness, or transmissivity, depending on the desired application. These tolerances can range from wide, such as found in a normal household-mirror, to extremely narrow, like those used in lasers or telescopes. Tightening the tolerances allows better and more precise imaging or beam transmission over longer distances. In imaging systems this can help reduce anomalies, distortion or blur, but at a much higher cost. Where viewing distances are relatively close or high precision is not a concern, wider tolerances can be used to make effective mirrors at affordable costs.Applications
Personal grooming
Mirrors are commonly used as aids to personal grooming. They may range from small sizes, good to carry with oneself, to full body sized; they may be handheld, mobile, fixed or adjustable. A classic example of the latter is the, which may be tilted.Safety and easier viewing
;Convex mirrors;Mouth mirrors or "dental mirrors"
;Rear-view mirrors
One-way mirrors and windows
;One-way mirrors;One-way windows
Signalling
With the sun as light source, a mirror can be used to signal by variations in the orientation of the mirror. The signal can be used over long distances, possibly up to on a clear day. This technique was used by Native American tribes and numerous militaries to transmit information between distant outposts.Mirrors can also be used for search to attract the attention of search and rescue parties. Specialized type of mirrors are available and are often included in military survival kits.
Technology
Televisions and projectors
Microscopic mirrors are a core element of many of the largest high-definition televisions and video projectors. A common technology of this type is Texas Instruments' DLP. A DLP chip is a postage stamp-sized microchip whose surface is an array of millions of microscopic mirrors. The picture is created as the individual mirrors move to either reflect light toward the projection surface, or toward a light absorbing surface.Other projection technologies involving mirrors include LCoS. Like a DLP chip, LCoS is a microchip of similar size, but rather than millions of individual mirrors, there is a single mirror that is actively shielded by a liquid crystal matrix with up to millions of pixels. The picture, formed as light, is either reflected toward the projection surface, or absorbed by the activated LCD pixels. LCoS-based televisions and projectors often use 3 chips, one for each primary color.
Large mirrors are used in rear projection televisions. Light is "folded" by one or more mirrors so that the television set is compact.
Solar power
Mirrors are integral parts of a solar power plant. The one shown in the adjacent picture uses concentrated solar power from an array of parabolic troughs.Instruments
s and other precision instruments use front silvered or first surface mirrors, where the reflecting surface is placed on the front surface of the glass. Some of them use silver, but most are aluminium, which is more reflective at short wavelengths than silver.All of these coatings are easily damaged and require special handling.
They reflect 90% to 95% of the incident light when new.
The coatings are typically applied by vacuum deposition.
A protective overcoat is usually applied before the mirror is removed from the vacuum, because the coating otherwise begins to corrode as soon as it is exposed to oxygen and humidity in the air. Front silvered mirrors have to be resurfaced occasionally to keep their quality. There are optical mirrors such as mangin mirrors that are second surface mirrors as part of their optical designs, usually to correct optical aberrations.
The reflectivity of the mirror coating can be measured using a reflectometer and for a particular metal it will be different for different wavelengths of light. This is exploited in some optical work to make cold mirrors and hot mirrors. A cold mirror is made by using a transparent substrate and choosing a coating material that is more reflective to visible light and more transmissive to infrared light.
A hot mirror is the opposite, the coating preferentially reflects infrared. Mirror surfaces are sometimes given thin film overcoatings both to retard degradation of the surface and to increase their reflectivity in parts of the spectrum where they will be used. For instance, aluminum mirrors are commonly coated with silicon dioxide or magnesium fluoride. The reflectivity as a function of wavelength depends on both the thickness of the coating and on how it is applied.
. The mirror is over 99% reflective at 550 nanometers,, but will allow most other colors to pass through.
s. With a center wavelength of 600 nm and bandwidth of 100 nm, the coating is totally reflective to the orange construction paper, but only reflects the reddish hues from the blue paper.
For scientific optical work, dielectric mirrors are often used. These are glass substrates on which one or more layers of dielectric material are deposited, to form an optical coating. By careful choice of the type and thickness of the dielectric layers, the range of wavelengths and amount of light reflected from the mirror can be specified. The best mirrors of this type can reflect >99.999% of the light which is incident on the mirror. Such mirrors are often used in lasers.
In astronomy, adaptive optics is a technique to measure variable image distortions and adapt a deformable mirror accordingly on a timescale of milliseconds, to compensate for the distortions.
Although most mirrors are designed to reflect visible light, surfaces reflecting other forms of electromagnetic radiation are also called "mirrors". The mirrors for other ranges of electromagnetic waves are used in
optics and astronomy. Mirrors for radio waves are important elements of radio telescopes.
Face-to-face mirrors
Two or more mirrors aligned exactly parallel and facing each other can give an infinite regress of reflections, called an infinity mirror effect. Some devices use this to generate multiple reflections:- Fabry–Pérot interferometer
- Laser
- 3D Kaleidoscope to concentrate light
- momentum-enhanced solar sail
Military applications
Seasonal lighting
Due to its location in a steep-sided valley, the Italian town of Viganella gets no direct sunlight for seven weeks each winter. In 2006 a €100,000 computer-controlled mirror, 8×5 m, was installed to reflect sunlight into the town's piazza. In early 2007 the similarly situated village of Bondo, Switzerland, was considering applying this solution as well. In 2013, mirrors were installed to reflect sunlight into the town square in the Norwegian town of Rjukan. Mirrors can be used to produce enhanced lighting effects in greenhouses or conservatories.Architecture
Mirrors are a popular design theme in architecture, particularly with late modern and post-modernist high-rise buildings in major cities. Early examples include the Campbell Center in Dallas, which opened in 1972, and the John Hancock Tower in Boston.More recently, two skyscrapers designed by architect Rafael Viñoly, the Vdara in Las Vegas and 20 Fenchurch Street in London, have experienced unusual problems due to their concave curved glass exteriors acting as respectively cylindrical and spherical reflectors for sunlight. In 2010, the Las Vegas Review Journal reported that sunlight reflected off the Vdara's south-facing tower could singe swimmers in the hotel pool, as well as melting plastic cups and shopping bags; employees of the hotel referred to the phenomenon as the "Vdara death ray", aka the "fryscraper." In 2013, sunlight reflecting off 20 Fenchurch Street melted parts of a Jaguar car parked nearby and scorching or igniting the carpet of a nearby barber shop. This building had been nicknamed the "walkie-talkie" because its shape was supposedly similar to a certain model of two-way radio; but after its tendency to overheat surrounding objects became known, the nickname changed to the "walkie-scorchie."
Fine art
Paintings
Painters depicting someone gazing into a mirror often also show the person's reflection. This is a kind of abstraction—in most cases the angle of view is such that the person's reflection should not be visible. Similarly, in movies and still photography an actor or actress is often shown ostensibly looking at him- or herself in the mirror, and yet the reflection faces the camera. In reality, the actor or actress sees only the camera and its operator in this case, not their own reflection. In the psychology of perception, this is known as the Venus effect.The mirror is the central device in some of the greatest of European paintings:
- Édouard Manet's A Bar at the Folies-Bergère
- Titian's Venus with a Mirror
- Jan van Eyck's Arnolfini Portrait
- Pablo Picasso's Girl before a Mirror
- Diego Velázquez's Rokeby Venus
- Diego Velázquez's Las Meninas, wherein the viewer is both the watcher and the watched, and the many adaptations of that painting in various media
- Veronese's Venus with a Mirror
- Filippo Brunelleschi discovered linear perspective with the help of the mirror.
- Leonardo da Vinci called the mirror the "master of painters". He recommended, "When you wish to see whether your whole picture accords with what you have portrayed from nature take a mirror and reflect the actual object in it. Compare what is reflected with your painting and carefully consider whether both likenesses of the subject correspond, particularly in regard to the mirror."
- Many self-portraits are made possible through the use of mirrors, such as the great self-portraits by Dürer, Frida Kahlo, Rembrandt, and Van Gogh. M. C. Escher used special shapes of mirrors in order to achieve a much more complete view of his surroundings than by direct observation in Hand with Reflecting Sphere.
- István Orosz's anamorphic works are images distorted such that they only become clearly visible when reflected in a suitably shaped and positioned mirror.
Sculpture
- Anamorphosis projecting sculpture into mirrors
- Sculptures comprised entirely or in part of mirrors
- * :File:Infinity wulsin.jpg|Infinity Also Hurts is a mirror, glass and silicone sculpture by artist, Seth Wulsin
- * Sky Mirror is a public sculpture by artist, Anish Kapoor
Other artistic mediums
- A Chinese magic mirror is an art in which the face of the bronze mirror projects the same image that was cast on its back. This is due to minute curvatures on its front.
- Specular holography uses a large number of curved mirrors embedded in a surface to produce three-dimensional imagery.
- Paintings on mirror surfaces
- Special mirror installations
- * Follow Me mirror labyrinth by artist, Jeppe Hein
- * Mirror Neon Cube by artist, Jeppe Hein
Religious Function of the real and depicted mirror
Decoration
Mirrors are frequently used in interior decoration and as ornaments:- Mirrors, typically large and unframed, are frequently used in interior decoration to create an illusion of space and amplify the apparent size of a room. They come also framed in a variety of forms, such as the pier glass and the overmantel mirror.
- Mirrors are used also in some schools of feng shui, an ancient Chinese practice of placement and arrangement of space to achieve harmony with the environment.
- The softness of old mirrors is sometimes replicated by contemporary artisans for use in interior design. These reproduction antiqued mirrors are works of art and can bring color and texture to an otherwise hard, cold reflective surface. It is an artistic process that has been attempted by many and perfected by few.
- A decorative reflecting sphere of thin metal-coated glass, working as a reducing wide-angle mirror, is sold as a Christmas ornament called a bauble.
- Some pubs and bars hang mirrors depicting the logo of a brand of liquor, beer or drinking establishment.
Entertainment
- Illuminated rotating disco balls covered with small mirrors are used to cast moving spots of light around a dance floor.
- The hall of mirrors, commonly found in amusement parks, is an attraction in which a number of distorting mirrors are used to produce unusual reflections of the visitor.
- Mirrors are employed in kaleidoscopes, personal entertainment devices invented in Scotland by Sir David Brewster.
- Mirrors are often used in magic to create an illusion. One effect is called Pepper's ghost.
- Mirror mazes, often found in amusement parks as well, contain large numbers of mirrors and sheets of glass. The idea is to navigate the disorientating array without bumping into the walls. Mirrors in attractions like this are often made of Plexiglas as to assure that they do not break.
Film and television
- Candyman is a horror film about a malevolent spirit summoned by speaking its name in front of a mirror.
- Mirrors is a horror film about haunted mirrors that reflect different scenes than those in front of them.
- Poltergeist III features mirrors that do not reflect reality and which can be used as portals to the afterlife.
- Oculus is a horror film about a haunted mirror that causes people to hallucinate and commit acts of violence.
- The 10th Kingdom miniseries requires the characters to use a magic mirror to travel between New York City and the Nine Kingdoms of fairy tale.
Literature
- Christian Bible passages, 1 Corinthians 13:12 and 2 Corinthians 3:18, reference a dim mirror image or poor mirror reflection.
- Narcissus of Greek mythology wastes away while gazing, self-admiringly, at his reflection in water.
- The Song dynasty history Zizhi Tongjian Comprehensive Mirror in Aid of Governance by Sima Guang is so titled because "mirror" is used metaphorically in Chinese to refer to gaining insight by reflecting on past experience or history.
- In the European fairy tale, Snow White, the evil queen asks, "Mirror, mirror, on the wall... who's the fairest of them all?"
- In Alfred, Lord Tennyson's famous poem The Lady of Shalott, the titular character possesses a mirror that enables her to look out on the people of Camelot, as she is under a curse that prevents her from seeing Camelot directly.
- Hans Christian Andersen's fairy tale The Snow Queen, in which the devil, in a form of an evil troll, has made a magic mirror that distorts the appearance of everything that it reflects.
- Lewis Carroll's Through the Looking-Glass and What Alice Found There is one of the best-loved uses of mirrors in literature. The text itself utilizes a narrative that mirrors that of its predecessor, Alice's Adventures in Wonderland.
- In Oscar Wilde's novel, The Picture of Dorian Gray, a portrait serves as a magical mirror that reflects the true visage of the perpetually youthful protagonist, as well as the effect on his soul of each sinful act.
- The short story Tlön, Uqbar, Orbis Tertius by Jorge Luis Borges begins with the phrase "I owe the discovery of Uqbar to the conjunction of a mirror and an encyclopedia" and contains other references to mirrors.
- The Trap, a short story by H.P. Lovecraft and Henry S. Whitehead, centers around a mirror. "It was on a certain Thursday morning in December that the whole thing began with that unaccountable motion I thought I saw in my antique Copenhagen mirror. Something, it seemed to me, stirred—something reflected in the glass, though I was alone in my quarters."
- The magical objects in the Harry Potter series include the Mirror of Erised and two-way mirrors.
- Under Appendix: Variant Planes & Cosmologies of the Dungeons & Dragons Manual Of The Planes, is The Plane of Mirrors. It describes the Plane of Mirrors as a space existing behind reflective surfaces, and experienced by visitors as a long corridor. The greatest danger to visitors upon entering the plane is the instant creation of a mirror-self with the opposite alignment of the original visitor.
- The Mirror Thief, a novel by Martin Seay, includes a fictional account of industrial espionage surrounding mirror manufacturing in 16th century Venice.
- The Reaper's Image, a short story by Stephen King, concerns a rare Elizabethan mirror that displays the Reaper's image when viewed, which symbolises the death of the viewer.
- Kilgore Trout, a protagonist of Kurt Vonnegut's novel Breakfast of Champions, believes that mirrors are windows to other universes, and refers to them as "leaks," a recurring motif in the book.
Mirrors and animals
- All great apes:
- * Humans. Humans tend to fail the mirror test until they are about 18 months old, or what psychoanalysts call the "mirror stage".
- * Bonobos
- * Chimpanzees
- * Orangutans
- * Gorillas. Initially, it was thought that gorillas did not pass the test, but there are now several well-documented reports of gorillas passing the test.
- Bottlenose dolphins
- Orcas
- Elephants
- European magpies
- Jumping spiders, specifically of the genus Portia