Interstellar object


An interstellar object is an astronomical object that is located in interstellar space and is not gravitationally bound to a star. This term can also be applied to an object that is on an interstellar trajectory but is temporarily passing close to a star, such as certain asteroids and comets. In the latter case, the object may be called an interstellar interloper.
The first interstellar object to be discovered in the Solar System was 1I/ʻOumuamua in 2017. The second was 2I/Borisov in 2019. They both possess significant hyperbolic excess velocity, indicating they did not originate in the Solar System.

Nomenclature

With the first discovery of an interstellar object, the IAU has proposed a new series of small-body designations for interstellar objects, the I numbers, similar to the comet numbering system. The Minor Planet Center will assign the numbers. Provisional designations for interstellar objects will be handled using the C/ or A/ prefix, as appropriate.

Overview

Astronomers estimate that several interstellar objects of extrasolar origin pass inside the orbit of Earth each year, and that 10,000 are passing inside the orbit of Neptune on any given day.
If interstellar comets exist, they must occasionally pass through the inner Solar System. They would approach the Solar System with random velocities, mostly from the direction of the constellation Hercules because the Solar System is moving in that direction, called the solar apex. Until the discovery of 'Oumuamua, the fact that no comet with a speed greater than the Sun's escape velocity had been observed was used to place upper limits to their density in interstellar space. A paper by Torbett indicated that the density was no more than 1013 comets per cubic parsec. Other analyses, of data from LINEAR, set the upper limit at 4.5/AU3, or 1012 comets per cubic parsec. A more recent estimate by David C. Jewitt and colleagues, following the detection of 'Oumuamua, predicts that "The steady-state population of similar, ~100 m scale interstellar objects inside the orbit of Neptune is ~1, each with a residence time of ~10 years."
Current models of Oort cloud formation predict that more comets are ejected into interstellar space than are retained in the Oort cloud, with estimates varying from 3 to 100 times as many. Other simulations suggest that 90–99% of comets are ejected. There is no reason to believe comets formed in other star systems would not be similarly scattered.
It is possible for objects orbiting a star to be ejected due to interaction with a third massive body, thereby becoming interstellar objects. Such a process was initiated in the early 1980s when C/1980 E1, initially gravitationally bound to the Sun, passed near Jupiter and was accelerated sufficiently to reach escape velocity from the Solar System. This changed its orbit from elliptical to hyperbolic and made it the most eccentric known object at the time, with an eccentricity of 1.057. It is heading for interstellar space.
Due to present observational difficulties, an interstellar object can usually only be detected if it passes through the Solar System, where it can be distinguished by its strongly hyperbolic trajectory and hyperbolic excess velocity of more than a few km/s, proving that it is not gravitationally bound to the Sun. In contrast, gravitationally bound objects follow elliptic orbits around the Sun.
An interstellar comet can probably, on rare occasions, be captured into a heliocentric orbit while passing through the Solar System. Computer simulations show that Jupiter is the only planet massive enough to capture one, and that this can be expected to occur once every sixty million years. Comets Machholz 1 and Hyakutake C/1996 B2 are possible examples of such comets. They have atypical chemical makeups for comets in the Solar System.
On 27 November 2018, Loeb and his undergraduate student at Harvard University, Amir Siraj, proposed a search for ʻOumuamua-like objects which are trapped in the Solar System as a result of losing orbital energy through a close encounter with Jupiter. They identified centaur candidates, such as and, as captured interstellar objects that could be visited by dedicated missions. The authors pointed out that future sky surveys, such as with LSST, should find many candidates.
Recent research suggests that asteroid 514107 Kaʻepaokaʻawela may be a former interstellar object, captured some 4.5 billion years ago, as evidenced by its co-orbital motion with Jupiter and its retrograde orbit around the Sun. In addition, comet C/2018 V1 has a non-negligible probability of having an extrasolar provenance although an origin in the Oort cloud cannot be excluded.
Harvard astronomers suggest that matter—and potentially dormant spores—can be exchanged across vast distances. The detection of ʻOumuamua crossing the inner Solar System confirms the possibility of a material link with exoplanetary systems.

Confirmed objects

1I/2017 U1 (ʻOumuamua)

A dim object was discovered on October 19, 2017 by the Pan-STARRS telescope, at an apparent magnitude of 20. The observations showed that it follows a strongly hyperbolic trajectory around the Sun at a speed greater than the solar escape velocity, in turn meaning that it is not gravitationally bound to the Solar System and likely to be an interstellar object. It was initially named C/2017 U1 because it was assumed to be a comet, and was renamed to A/2017 U1 after no cometary activity was found on October 25. After its interstellar nature was confirmed, it was renamed to 1I/ʻOumuamua – "1" because it is the first such object to be discovered, "I" for interstellar, and "‘Oumuamua" is a Hawaiian word meaning "a messenger from afar arriving first".
The lack of cometary activity from ʻOumuamua suggests an origin from the inner regions of whatever stellar system it came from, losing all surface volatiles within the frost line, much like the rocky asteroids, extinct comets and damocloids we know from our Solar System. This is only a suggestion, as ʻOumuamua might very well have lost all surface volatiles to eons of cosmic radiation exposure in interstellar space, developing a thick crust layer after it was expelled from its parent system.
ObjectVelocity
C/2012 S1
Voyager 1
1I/2017 U1
2I/Borisov
2014Jan08 bolide

ʻOumuamua has an eccentricity of 1.199, which was the highest eccentricity ever observed for any object in the Solar System by a wide margin prior to the discovery of comet 2I/Borisov in August 2019.
In September 2018, astronomers described several possible home star systems from which ʻOumuamua may have begun its interstellar journey.

2I/Borisov

The object was discovered on 30 August 2019 at MARGO, Nauchnyy, Crimea by Gennadiy Borisov using his custom-built 0.65-meter telescope.
On 13 September 2019, the Gran Telescopio Canarias obtained a low-resolution visible spectrum of 2I/Borisov that revealed that this object has a surface composition not too different from that found in typical Oort Cloud comets.
The IAU Working Group for Small Body Nomenclature kept the name Borisov, giving the comet the interstellar designation of 2I/Borisov. On 12 March 2020, astronomers reported observational evidence of "ongoing nucleus fragmentation" from the comet 2I/Borisov.

Candidates

In November 2018, Harvard astronomers Amir Siraj and Avi Loeb reported that there should be hundreds of 'Oumuamua-size interstellar objects in the Solar System, based on calculated orbital characteristics, and presented several centaur candidates such as and. These are all orbiting the Sun, but may have been captured in the distant past.
On 8 January 2014, a bolide which has been identified by Loeb and Siraj as a potentially interstellar object originating from an unbound hyperbolic orbit exploded in the atmosphere over northern Papua New Guinea. It had an eccentricity of 2.4, an inclination of 10°, and a speed of 43.8 km/s when outside of the Solar System. This would make it notably faster than ʻOumuamua which was 26.3 km/s when outside the Solar System. The meteor is estimated to have been 0.9 meters in diameter. Other astronomers doubt the interstellar origin because the meteor catalog used does not report uncertainties on the incoming velocity. The validity of any single data point remains questionable.

Hypothetical missions

With current space technology, close visits and orbital missions are challenging due to their high speeds, though not impossible.
The Initiative for Interstellar Studies launched Project Lyra to assess the feasibility of a mission to ʻOumuamua. Several options for sending a spacecraft to ʻOumuamua within a time-frame of 5 to 25 years were suggested. One option is using first a Jupiter flyby followed by a close solar flyby at in order to take advantage of the Oberth effect. Different mission durations and their velocity requirements were explored with respect to the launch date, assuming direct impulsive transfer to the intercept trajectory.
The Comet Interceptor spacecraft by ESA and JAXA, planned to launch in 2028, will be positioned at the Sun-Earth L2 point to wait for a suitable long-period comet to intercept and flyby for study. In case that no suitable comet is identified during its 3-year wait, the spacecraft could be tasked to intercept an interstellar object in short notice, if reachable.