Hull (watercraft)
A hull is the watertight body of a ship or boat. The hull may open at the top, or it may be fully or partially covered with a deck. Atop the deck may be a deckhouse and other superstructures, such as a funnel, derrick, or mast. The line where the hull meets the water surface is called the waterline.
General features
There is a wide variety of hull types that are chosen for suitability for different usages, the hull shape being dependent upon the needs of the design. Shapes range from a nearly perfect box in the case of scow barges, to a needle-sharp surface of revolution in the case of a racing multihull sailboat. The shape is chosen to strike a balance between cost, hydrostatic considerations, hydrodynamics and special considerations for the ship's role, such as the rounded bow of an icebreaker or the flat bottom of a landing craft.In a typical modern steel ship, the hull will have watertight decks, and major transverse members called bulkheads. There may also be intermediate members such as girders, and webs, and minor members called ordinary transverse frames, frames, or longitudinals, depending on the structural arrangement. The uppermost continuous deck may be called the "upper deck", "weather deck", "spar deck", "main deck", or simply "deck". The particular name given depends on the context—the type of ship or boat, the arrangement, or even where it sails.
In a typical wooden sailboat, the hull is constructed of wooden planking, supported by transverse frames and bulkheads, which are further tied together by longitudinal stringers or ceiling. Often but not always there is a centerline longitudinal member called a keel. In fiberglass or composite hulls, the structure may resemble wooden or steel vessels to some extent, or be of a monocoque arrangement. In many cases, composite hulls are built by sandwiching thin fiber-reinforced skins over a lightweight but reasonably rigid core of foam, balsa wood, impregnated paper honeycomb or other material.
Perhaps the earliest proper hulls were built by the Ancient Egyptians, who by 3000 BC knew how to assemble wooden planks into a hull.
Hull shapes
Hulls come in many varieties and can have composite shape,, but are grouped primarily as follows:- Chined and hard-chined. Examples are the flat-bottom, v-bottom, and multi-bottom hull. These types have at least one pronounced knuckle throughout all or most of their length.
- Moulded, round bilged or soft-chined. These hull shapes all have smooth curves. Examples are the round bilge, semi-round bilge, and s-bottom hull.
Planing and displacement hulls
- Displacement hull: here the hull is supported exclusively or predominantly by buoyancy. Vessels that have this type of hull travel through the water at a limited rate that is defined by the waterline length. They are often, though not always, heavier than planing types.
- Planing hull: here, the planing hull form is configured to develop positive dynamic pressure so that its draft decreases with increasing speed. The dynamic lift reduces the wetted surface and therefore also the drag. They are sometimes flat-bottomed, sometimes V-bottomed and more rarely, round-bilged. The most common form is to have at least one chine, which makes for more efficient planing and can throw spray down. Planing hulls are more efficient at higher speeds, although they still require more energy to achieve these speeds. An effective planing hull must be as light as possible with flat surfaces that are consistent with good sea keeping. Sail boats that plane must also sail efficiently in displacement mode in light winds.
- Semi-displacement, or semi-planing: here the hull form is capable of developing a moderate amount of dynamic lift; however, most of the vessel's weight is still supported through buoyancy.
Hull forms
With a small payload, such a craft has less of its hull below the waterline, giving less resistance and more speed. With a greater payload, resistance is greater and speed lower, but the hull’s outward bend provides smoother performance in waves. As such, the inverted bell shape is a popular form used with planing hulls.
Chined and hard-chined hulls
A chined hull does not have a smooth rounded lower cross-section. Instead, its contours are interrupted by hard angles where components of the hull meet underwater. The sharper the intersection, the “harder“ the chine.The Cajun "pirogue" is an example of a craft with hard chines.
Benefits of this type of hull include potentially lower production cost and a fairly flat bottom, making the boat faster at planing. Sail boats with chined hull make use of a dagger board or keel.
Chined hulls may have one of three shapes:
- Flat-bottom chined hulls
- Multi-chined hulls
- V-bottom chined hulls. Sometimes called hard chine.
Displacement chined hulls have more wetted surface area, hence more drag, than an equivalent round-hull form, for any given displacement.
Smooth curve hulls
Smooth curve hulls are hulls which use, just like the curved hulls, a centreboard or an attached keel.Semi round bilge hulls are somewhat less round. The advantage of the semi-round is that it is a nice middle between the S-bottom and chined hull. Typical examples of a semi-round bilge hull can be found in the Centaur and Laser cruising dinghies.
S-bottom hulls are hulls shaped like an s. In the s-bottom, the hull runs smooth to the keel. As there are no sharp corners in the fuselage. Boats with this hull have a fixed keel, or a kielmidzwaard. This is a short fixed keel, with a swing keel inside. Examples of cruising dinghies that use this s-shape are the Yngling and Randmeer.
Appendages
- Control devices such as a rudder, trim tabs or stabilizing fins may be fitted.
- A keel may be fitted on a hull to increase the transverse stability, directional stability or to create lift.
- A forward protrusion below the waterline is called a bulbous bow. These are fitted on some hulls to reduce the wave making resistance drag and thereby increase fuel efficiency. Bulbs fitted at the stern are less common but accomplish a similar task.
Terms
- is a level reference line from which vertical distances are measured.
- Bow is the front part of the hull.
- Amidships is the middle portion of the vessel in the fore and aft direction.
- Port is the left side of the vessel when facing the bow from on board.
- Starboard is the right side of the vessel when facing the bow from on board.
- Stern is the rear part of the hull.
- Waterline is an imaginary line circumscribing the hull that matches the surface of the water when the hull is not moving.
Metrics
Block measures that define the principal dimensions. They are:
- Beam or breadth is the width of the hull.
- Draft or is the vertical distance from the bottom of the keel to the waterline.
- Freeboard is depth plus the height of the keel structure minus draft.
- Length at the waterline is the length from the forwardmost point of the waterline measured in profile to the stern-most point of the waterline.
- Length between perpendiculars is the length of the summer load waterline from the stern post to the point where it crosses the stem.
- Length overall is the extreme length from one end to the other.
- Moulded depth is the vertical distance measured from the top of the keel to the underside of the upper deck at side.
- Displacement is the weight of water equivalent to the immersed volume of the hull.
- Longitudinal centre of buoyancy is the longitudinal distance from a point of reference to the centre of the displaced volume of water when the hull is not moving. Note that the longitudinal centre of gravity or centre of the weight of the vessel must align with the LCB when the hull is in equilibrium.
- Longitudinal centre of flotation is the longitudinal distance from a point of reference to the centre of the area of waterplane when the hull is not moving. This can be visualized as being the area defined by the water's surface and the hull.
- Vertical centre of buoyancy is the vertical distance from a point of reference to the centre of the displaced volume of water when the hull is not moving.
- Volume is the volume of water displaced by the hull.
- 1) Block coefficient is the volume divided by the LWLx BWL x TWL. If you draw a box around the submerged part of the ship, it is the ratio of the box volume occupied by the ship. It gives a sense of how much of the block defined by the LWL, beam & draft is filled by the hull. Full forms such as oil tankers will have a high Cb where fine shapes such as sailboats will have a low Cb.
- 2) Midship coefficient is the cross-sectional area of the slice at midships divided by beam x draft. It displays the ratio of the largest underwater section of the hull to a rectangle of the same overall width and depth as the underwater section of the hull. This defines the fullness of the underbody. A low Cm indicates a cut-away mid-section and a high Cm indicates a boxy section shape. Sailboats have a cut-away mid-section with low Cx whereas cargo vessels have a boxy section with high Cx to help increase the Cb.
- 3) Prismatic coefficient is the volume divided by LWLx Ax. It displays the ratio of the immersed volume of the hull to a volume of a prism with equal length to the ship and cross-sectional area equal to the largest underwater section of the hull. This is used to evaluate the distribution of the volume of the underbody. A low or fine Cp indicates a full mid-section and fine ends, a high or full Cp indicates a boat with fuller ends. Planing hulls and other highspeed hulls tend towards a higher Cp. Efficient displacement hulls travelling at a low Froude number will tend to have a low Cp.
- 4) Waterplane coefficient is the waterplane area divided by LWL x BWL. The waterplane coefficient expresses the fullness of the waterplane, or the ratio of the waterplane area to a rectangle of the same length and width. A low Cw figure indicates fine ends and a high Cw figure indicates fuller ends. High Cw improves stability as well as handling behavior in rough conditions.
- Note:
Computer-aided design