Hilbert's second problem


In mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that the arithmetic is consistent - free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in, which include a second order completeness axiom.
In the 1930s, Kurt Gödel and Gerhard Gentzen proved results that cast new light on the problem. Some feel that Gödel's theorems give a negative solution to the problem, while others consider Gentzen's proof as a partial positive solution.

Hilbert's problem and its interpretation

In one English translation, Hilbert asks:

"When we are engaged in investigating the foundations of a science, we must set up a system of axioms which contains an exact and complete description of the relations subsisting between the elementary ideas of that science.... But above all I wish to designate the following as the most important among the numerous questions which can be asked with regard to the axioms: To prove that they are not contradictory, that is, that a definite number of logical steps based upon them can never lead to contradictory results. In geometry, the proof of the compatibility of the axioms can be effected by constructing a suitable field of numbers, such that analogous relations between the numbers of this field correspond to the geometrical axioms.... On the other hand a direct method is needed for the proof of the compatibility of the arithmetical axioms."

Hilbert's statement is sometimes misunderstood, because by the "arithmetical axioms" he did not mean a system equivalent to Peano arithmetic, but a stronger system with a second-order completeness axiom. The system Hilbert asked for a completeness proof of is more like second-order arithmetic than first-order Peano arithmetic.
As a nowadays common interpretation, a positive solution to Hilbert's second question would in particular provide a proof that Peano arithmetic is consistent.
There are many known proofs that Peano arithmetic is consistent that can be carried out in strong systems such as Zermelo–Fraenkel set theory. These do not provide a resolution to Hilbert's second question, however, because someone who doubts the consistency of Peano arithmetic is unlikely to accept the axioms of set theory to prove its consistency. Thus a satisfactory answer to Hilbert's problem must be carried out using principles that would be acceptable to someone who does not already believe PA is consistent. Such principles are often called finitistic because they are completely constructive and do not presuppose a completed infinity of natural numbers. Gödel's second incompleteness theorem places a severe limit on how weak a finitistic system can be while still proving the consistency of Peano arithmetic.

Gödel's incompleteness theorem

Gödel's second incompleteness theorem shows that it is not possible for any proof that Peano Arithmetic is consistent to be carried out within Peano arithmetic itself. This theorem shows that if the only acceptable proof procedures are those that can be formalized within arithmetic then Hilbert's call for a consistency proof cannot be answered. However, as Nagel and Newman explain, there is still room for a proof that cannot be formalized in arithmetic:

Gentzen's consistency proof

In 1936, Gentzen published a proof that Peano Arithmetic is consistent. Gentzen's result shows that a consistency proof can be obtained in a system that is much weaker than set theory.
Gentzen's proof proceeds by assigning to each proof in Peano arithmetic an ordinal number, based on the structure of the proof, with each of these ordinals less than ε0. He then proves by transfinite induction on these ordinals that no proof can conclude in a contradiction. The method used in this proof can also be used to prove a cut elimination result for Peano arithmetic in a stronger logic than first-order logic, but the consistency proof itself can be carried out in ordinary first-order logic using the axioms of primitive recursive arithmetic and a transfinite induction principle. Tait gives a game-theoretic interpretation of Gentzen's method.
Gentzen's consistency proof initiated the program of ordinal analysis in proof theory. In this program, formal theories of arithmetic or set theory are assigned ordinal numbers that measure the consistency strength of the theories. A theory will be unable to prove the consistency of another theory with a higher proof theoretic ordinal.

Modern viewpoints on the status of the problem

While the theorems of Gödel and Gentzen are now well understood by the mathematical logic community, no consensus has formed on whether these theorems answer Hilbert's second problem. Simpson argues that Gödel's incompleteness theorem shows that it is not possible to produce finitistic consistency proofs of strong theories. Kreisel states that although Gödel's results imply that no finitistic syntactic consistency proof can be obtained, semantic arguments can be used to give convincing consistency proofs. Detlefsen argues that Gödel's theorem does not prevent a consistency proof because its hypotheses might not apply to all the systems in which a consistency proof could be carried out. Dawson calls the belief that Gödel's theorem eliminates the possibility of a persuasive consistency proof "erroneous", citing the consistency proof given by Gentzen and a later one given by Gödel in 1958.