Heyting algebra


In mathematics, a Heyting algebra is a bounded lattice equipped with a binary operation ab of implication such that ≤ b is equivalent to c ≤. From a logical standpoint, AB is by this definition the weakest proposition for which modus ponens, the inference rule AB, AB, is sound. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by to formalize intuitionistic logic.
As lattices, Heyting algebras are distributive. Every Boolean algebra is a Heyting algebra when ab is defined as usual as ¬ab, as is every complete distributive lattice satisfying a one-sided infinite distributive law when ab is taken to be the supremum of the set of all c for which cab. In the finite case, every nonempty distributive lattice, in particular every nonempty finite chain, is automatically complete and completely distributive, and hence a Heyting algebra.
It follows from the definition that 1 ≤ 0 → a, corresponding to the intuition that any proposition a is implied by a contradiction 0. Although the negation operation ¬a is not part of the definition, it is definable as a → 0. The intuitive content of ¬a is the proposition that to assume a would lead to a contradiction. The definition implies that a ∧ ¬a = 0. It can further be shown that a ≤ ¬¬a, although the converse, ¬¬aa, is not true in general, that is, double negation elimination does not hold in general in a Heyting algebra.
Heyting algebras generalize Boolean algebras in the sense that a Heyting algebra satisfying a ∨ ¬a = 1, equivalently ¬¬a = a, is a Boolean algebra. Those elements of a Heyting algebra H of the form ¬a comprise a Boolean lattice, but in general this is not a subalgebra of H.
Heyting algebras serve as the algebraic models of propositional intuitionistic logic in the same way Boolean algebras model propositional classical logic. The internal logic of an elementary topos is based on the Heyting algebra of subobjects of the terminal object 1 ordered by inclusion, equivalently the morphisms from 1 to the subobject classifier Ω.
The open sets of any topological space form a complete Heyting algebra. Complete Heyting algebras thus become a central object of study in pointless topology.
Every Heyting algebra whose set of non-greatest elements has a greatest element is subdirectly irreducible, whence every Heyting algebra can be made subdirectly irreducible by adjoining a new greatest element. It follows that even among the finite Heyting algebras there exist infinitely many that are subdirectly irreducible, no two of which have the same equational theory. Hence no finite set of finite Heyting algebras can supply all the counterexamples to non-laws of Heyting algebra. This is in sharp contrast to Boolean algebras, whose only subdirectly irreducible one is the two-element one, which on its own therefore suffices for all counterexamples to non-laws of Boolean algebra, the basis for the simple truth table decision method. Nevertheless, it is decidable whether an equation holds of all Heyting algebras.
Heyting algebras are less often called pseudo-Boolean algebras, or even Brouwer lattices, although the latter term may denote the dual definition, or have a slightly more general meaning.

Formal definition

A Heyting algebra H is a bounded lattice such that for all a and b in H there is a greatest element x of H such that
This element is the relative pseudo-complement of a with respect to b, and is denoted ab. We write 1 and 0 for the largest and the smallest element of H, respectively.
In any Heyting algebra, one defines the pseudo-complement ¬a of any element a by setting ¬a =. By definition,, and ¬a is the largest element having this property. However, it is not in general true that, thus ¬ is only a pseudo-complement, not a true complement, as would be the case in a Boolean algebra.
A complete Heyting algebra is a Heyting algebra that is a complete lattice.
A subalgebra of a Heyting algebra H is a subset H1 of H containing 0 and 1 and closed under the operations ∧, ∨ and →. It follows that it is also closed under ¬. A subalgebra is made into a Heyting algebra by the induced operations.

Alternative definitions

Category-theoretic definition

A Heyting algebra is a bounded lattice that has all exponential objects.
The lattice is regarded as a category where
meet,, is the product. The exponential condition means that for any objects and in an exponential uniquely exists as an object in.
A Heyting implication is just an exponential: is an alternative notation for. From the definition of exponentials we have that implication is right adjoint to meet. This adjunction can be written as or more fully as:

Lattice-theoretic definitions

An equivalent definition of Heyting algebras can be given by considering the mappings:
for some fixed a in H. A bounded lattice H is a Heyting algebra if and only if every mapping fa is the lower adjoint of a monotone Galois connection. In this case the respective upper adjoint ga is given by ga = ax, where → is defined as above.
Yet another definition is as a residuated lattice whose monoid operation is ∧. The monoid unit must then be the top element 1. Commutativity of this monoid implies that the two residuals coincide as ab.

Bounded lattice with an implication operation

Given a bounded lattice A with largest and smallest elements 1 and 0, and a binary operation →, these together form a Heyting algebra if and only if the following hold:
where 4 is the distributive law for →.

Characterization using the axioms of intuitionistic logic

This characterization of Heyting algebras makes the proof of the basic facts concerning the relationship between intuitionist propositional calculus and Heyting algebras immediate..
Given a set A with three binary operations →, ∧ and ∨, and two distinguished elements and, then A is a Heyting algebra for these operations if and only if the following conditions hold for any elements x, y and z of A:
Finally, we define ¬x to be x→.
Condition 1 says that equivalent formulas should be identified. Condition 2 says that provably true formulas are closed under modus ponens. Conditions 3 and 4 are then conditions. Conditions 5, 6 and 7 are and conditions. Conditions 8, 9 and 10 are or conditions. Condition 11 is a false condition.
Of course, if a different set of axioms were chosen for logic, we could modify ours accordingly.

Examples