Embryo culture


Embryo culture is a component of in vitro fertilisation where in resultant embryos are allowed to grow for some time in an artificial medium.

Duration

The duration of embryo culture can be varied, conferring different stages of embryogenesis at embryo transfer. The main stages at which embryo transfer is performed are cleavage stage or the blastocyst stage.
Embryos which reach the day 3 cell stage can be tested for chromosomal or specific genetic defects prior to possible transfer by preimplantation genetic diagnosis. Embryo culture until the blastocyst stage confers a significant increase in live birth rate per embryo transfer, and there is no evidence of a difference between the groups in cumulative pregnancy rates. Transfer day 2 instead of day 3 after fertilization has no differences in live birth rate.
Monozygotic twinning is not increased after blastocyst transfer compared with cleavage-stage embryo transfer.
There are significantly higher odds of preterm birth and congenital anomalies among births from embryos cultured until the blastocyst stage compared with cleavage stage.

Techniques

Culture of embryos can either be performed in an artificial culture medium or in an autologous endometrial coculture. With artificial culture medium, there can either be the same culture medium throughout the period, or a sequential system can be used, in which the embryo is sequentially placed in different media, with different formulations based on the different concentration and composition of the tubal and uterine fluid in relation to change in the metabolic activity of the embryo during its development. For example, when culturing to the blastocyst stage, one medium may be used for culture to day 3, and a second medium is used for culture thereafter. Single or sequential medium are equally effective for the culture of human embryos to the blastocyst stage. Artificial embryo culture media basically contain glucose, pyruvate, and energy-providing components, but the addition of amino acids, nucleotides, vitamins, and cholesterol improve the performance of embryonic growth and development. Also substances like antioxidants, antibiotics, macromolecules, hormones and growth factors can be added. Methods to permit dynamic embryo culture with fluid flow and embryo movement are also available. A new method in development uses the uterus as an incubator and the naturally occurring intrauterine fluids as culture medium by encapsulating the embryos in a permeable intrauterine vessel.
A review in 2013 meta-analysis of commercially available IVF culture media was unable to identify a specific media that was superior in terms of pregnancy outcome.
Usage of low oxygen concentrations of 5% rather than about 20% in the atmosphere has been shown to increase live birth rate to a relative probability of 1.24, without any evidence of increased risk for multiple pregnancies, miscarriages or congenital abnormalities.

Buffering system

Control and regulation of pH are mandatory for in vitro embryo culture.Culture media can be classified according to type of buffer used:
CO₂ / bicarbonate - buffered medium: uses the same physiologicalbuffering system surrounding mammalian cells. Require the use of CO₂ incubators at 5-7%;
Phosphate-buffered medium: do not requires CO₂ environment.seems to have detrimental effects in embryo development in vitro;
HEPES-buffered medium:used as buffered medium for human oocyte collection and embryo handling;
MOPS-buffered medium: like HEPES, has the potential advantage that the buffering capacity is less temperature dependent.

Temperature

While it has been hypothesized that incubating at a temperature lower than 37°C may be a more accurate recreation of the temperature in the female reproductive tract, the evidence is uncertain whether different temperatures for embryo culture have different effects on pregnancy or live birth rates.

Risks

Animal studies have detected epigenetic abnormalities in embryos having undergone embryo culture, indicating a need to optimize the procedures.