Electricity sector in India


India is the world's third largest producer and third largest consumer of electricity. The national electric grid in India has an installed capacity of 371.054 GW as of 30 June 2020. Renewable power plants, which also include large hydroelectric plants, constitute 35.94% of India's total installed capacity. During the 2018-19 fiscal year, the gross electricity generated by utilities in India was 1,372 TWh and the total electricity generation in the country was 1,547 TWh. The gross electricity consumption in 2018-19 was 1,181 kWh per capita. In 2015-16, electric energy consumption in agriculture was recorded as being the highest worldwide. The per capita electricity consumption is low compared to most other countries despite India having a low electricity tariff.
India has a surplus power generation capacity but lacks adequate distribution infrastructure. To address this, the Government of India launched a program called "Power for All" in 2016. The program was accomplished by December 2018 in providing the necessary infrastructure to ensure uninterrupted electricity supply to all households, industries, and commercial establishments. Funding was made through a collaboration between the Government of India and its constituent states.
India's electricity sector is dominated by fossil fuels, in particular coal, which during the 2018-19 fiscal year produced about three-quarters of the country's electricity. The government is making efforts to increase investment in renewable energy. The government's National Electricity Plan of 2018 states that the country does not need more non-renewable power plants in the utility sector until 2027, with the commissioning of 50,025 MW coal-based power plants under construction and addition of 275,000 MW total renewable power capacity after the retirement of nearly 48,000 MW old coal-fired plants. It is expected that non-fossil fuels generation
contribution is likely to be around 44.7% of the total gross electricity generation by the year 2029-30.

History

The first demonstration of electric light in Calcutta was conducted on 24 July 1879 by P.W. Fleury & Co. On 7 January 1897, Kilburn & Co secured the Calcutta electric lighting license as agents of the Indian Electric Co, which was registered in London on 15 January 1897. A month later, the company was renamed the Calcutta Electric Supply Corporation. The control of the company was transferred from London to Calcutta only in 1970. The introduction of electricity in Calcutta was a success, and power was next introduced in Bombay. The first electric lighting demonstration in Mumbai was in 1882 at Crawford Market and the Bombay Electric Supply & Tramways Company set up a generating station in 1905 to provide electricity for the tramway.
The first hydroelectric installation in India was installed near a tea estate at Sidrapong for the Darjeeling Municipality in 1897. The first electric street light in Asia was lit on 5 August 1905 in Bangalore. The first electric train in the country ran on the Harbour Line between Bombay's Victoria Terminus and Kurla on 3 February 1925. On 18 August 2015, Cochin International Airport became the world's first fully solar powered airport with the inauguration of a dedicated solar plant.
India began using grid management on a regional basis in the 1960s. Individual State grids were interconnected to form 5 regional grids covering mainland India, the Northern, Eastern, Western, North Eastern and Southern Grids. These regional links were established to enable transmission of surplus electricity between states in each region. In the 1990s, the Indian government began planning for a national grid. Regional grids were initially interconnected by asynchronous high-voltage direct current back-to-back links facilitating the limited exchange of regulated power. The links were subsequently upgraded to high capacity synchronous links.
The first interconnection of regional grids was established in October 1991 when the North Eastern and Eastern grids were interconnected. The Western Grid was interconnected with these grids in March 2003. The Northern grid was also interconnected in August 2006, forming a Central Grid that was synchronously connected and operating at one frequency. The sole remaining regional grid, the Southern Grid, was synchronously interconnected to the Central Grid on 31 December 2013 with the commissioning of the 765 kV Raichur-Solapur transmission line, establishing the National Grid.
By the end of the calendar year 2015, despite poor hydroelectricity generation, India had become a power surplus nation with huge power generation capacity idling for want of demand. The calendar year 2016 started with steep falls in the international price of energy commodities such as coal, diesel oil, naphtha, bunker fuel, and liquefied natural gas, which are used in electricity generation in India. As a result of the global glut in petroleum products, these fuels became cheap enough to compete with pit head coal-based power generators. Coal prices have also fallen. Low demand for coal has led to coal stocks building up at power stations as well as coal mines. New installations of renewable energy in India surpassed installations of fossil fuel for the first time in 2016-17.
On March 29, 2017, the Central Electricity Authority stated that for the first time India has become a net exporter of electricity. India exported 5,798 GWh to neighbouring countries, against a total import of 5,585 GWh.

Installed capacity

The total installed power generation capacity is the sum of utility capacity, captive power capacity, and other non-utilities

Utility power

The total installed capacity stated is after subtracting retired capacity. Nearly 40,000 MW is in various stages of construction as on 31 March 2019.
The total installed utility power generation capacity as on 31 July 2019 by sector and type is given below.

Captive power

The installed captive power generation capacity associated with industry-owned plants is 58,000 MW as of 31 March 2019, In fiscal year 2018-19 175,000 GWh was generated. Diesel power generation sets of 75,000 MW capacity are also installed in the country. In addition, there are a large number of diesel generators of capacity less than 100 kVA to cater to emergency power needs during power outages in all sectors.
NumberSourceCaptive Power Capacity ShareElectricity generated Share
1Coal34,83360.06%141,13780.64%
2Hydroelectricity480.08%970.09%
3Renewable energy source1,8813.24%2,2581.28%
4Natural Gas7,75313.37%23,78513.58%
5Oil13,48523.25%7,7234.41%
Total58,000100.00% 175,000100.00%

Installed capacity by state or territory

The latest break up of state wise installed capacity is given in the table below.

Demand

;Demand trend
During the fiscal year 2018-19, the utility energy availability was 1,267.5 billion KWh, a short fall relative to requirements of 7.07 billion KWh. Peak load met was 175,528 MW, 1,494 MW below requirements. In the 2019 Load Generation Balance report, India's Central Electricity Authority anticipated energy surplus and peak surplus to be 5.8% and 8.4%, respectively, for the 2019–20 fiscal year. Power would be made available to few states expected to face shortages from states with a surplus, through regional transmission links. From calendar year 2015 onwards, power generation in India has been less of a problem than power distribution.
;Demand drivers
Nearly 0.28% of Indian households have no access to electricity. The International Energy Agency estimates India will add between 600 GW to 1,200 GW of additional new power generation capacity before 2050. This added new capacity is similar in scale to the 740 GW total power generation capacity of the European Union in 2005. The technologies and fuel sources India adopts as it adds this electricity generation capacity may have a significant impact on global resource usage and environmental issues. The demand for electricity for cooling is projected to grow rapidly.
About 136 million Indians use traditional fuels – firewood, agricultural waste and dry animal dung fuel – for cooking and general heating needs. These traditional fuels are burnt in cook stoves, sometimes known as chulah or chulha. Traditional fuel is an inefficient source of energy, and its burning releases high levels of smoke, PM10 particulate matter, NOX, SOX, PAHs, polyaromatics, formaldehyde, carbon monoxide and other air pollutants, affecting outdoor air quality, haze and smog, chronic health problems, damage to forests, ecosystems and global climate. The World Health Organization estimates that 300,000 to 400,000 people in India die of indoor air pollution and carbon monoxide poisoning every year because of biomass burning and use of chulahs. Burning traditional fuel in conventional cook stoves is estimated to release 5–15x more pollutants than industrial combustion of coal, and is unlikely to be replaced until electricity or clean-burning fuel and combustion technologies become reliably available and widely adopted in rural and urban India. The growth of the electricity sector in India may help find a sustainable alternative to traditional fuel burning.
In addition to air pollution problems, a 2007 study finds that discharge of untreated sewage is the single most important cause for pollution of surface and groundwater in India. The majority of government-owned sewage treatment plants remain closed most of the time in part because of the lack of a reliable electricity supply to operate the plants. Uncollected waste accumulates in urban areas, causing unhygienic conditions, and release heavy metals and pollutants that leaches to surface and groundwater. A reliable supply of electricity is required to address India's water pollution and associated environmental issues.
Other drivers for India's electricity sector are its rapidly growing economy, rising exports, improving infrastructure and increasing household incomes.
* Data from fiscal year ending on 31 March of each year.
** Refers to fiscal year ending on 31 December.
Note: Per Capita Consumption= / mid year population. 'Consumption' is 'gross electricity generation by all sources plus net import' after subtracting transmission loses and auxiliary consumption in electricity generation.
The per capita annual domestic electricity consumption in India during the year 2009 was 96 kWh in rural areas and 288 kWh in urban areas for those with access to electricity. Globally the per capita annual average is 2,600 kWh and in the European Union it is 6,200 kWh.

Rural and Urban electrification

India's Ministry of Power launched Deen Dayal Upadhyaya Gram Jyoti Yojana as one of its flagship programmes in July 2015 with the objective of providing round the clock power to rural areas. The programme focused on reforms in the rural power sector by separating feeder lines for rural households from those for agricultural applications, and strengthening transmission and distribution infrastructure. A previous scheme for rural electrification, Rajiv Gandhi Grameen Vidyutikaran Yojana was subsumed into the new scheme. As of 28 April 2018, 12 days ahead of the target date, all Indian villages were electrified.
India has also achieved close to 100% electrification of all rural and urban households. As of 4 January 2019, 211.88 million rural households were provided with electricity, close to 100% of the 212.65 million total rural households. As of 4 January 2019, 42.937 million urban households are provided with electricity, close to 100% of the 42.941 million total urban households.

Per-Capita consumption

State/Union territoryRegionPer-Capita Consumption
Dadra and Nagar HaveliWestern15,783
Daman and DiuWestern7,965
GoaWestern2,466
GujaratWestern2,279
ChhattisgarhWestern2,016
MaharashtraWestern1,307
Madhya PradeshWestern989
PuducherrySouthern1,784
Tamil NaduSouthern1,847
Andhra PradeshSouthern1,319
TelanganaSouthern1,551
KarnatakaSouthern1,367
KeralaSouthern763
LakshadweepSouthern633
PunjabNorthern2,028
HaryanaNorthern1,975
DelhiNorthern1,574
Himachal PradeshNorthern1,340
UttarakhandNorthern1,454
ChandigarhNorthern1,128
Jammu and KashmirNorthern1,282
RajasthanNorthern1,166
Uttar PradeshNorthern585
OdishaEastern1,622
SikkimEastern806
JharkhandEastern915
West BengalEastern665
Andaman and Nicobar IslandsEastern370
BiharEastern272
Arunachal PradeshNorth Eastern648
MeghalayaNorth Eastern832
MizoramNorth Eastern523
NagalandNorth Eastern345
TripuraNorth Eastern470
AssamNorth Eastern339
ManipurNorth Eastern326
National1,122

Note: Per capita consumption = / mid year population.

Electricity generation

India has recorded rapid growth in electricity generation since 1985, increasing from 179 TW-hr in 1985 to 1,057 TW-hr in 2012. The majority of the increase came from coal-fired plants and non-conventional renewable energy sources, with the contribution from natural gas, oil, and hydro plants decreasing in 2012-2017. The gross utility electricity generation was 1,384 billion kWh in 2019-20, representing 1.0 % annual growth compared to 2018-2019. The contribution from renewable energy sources was nearly 20% of the total. In the year 2019-20, all the incremental electricity generation is contributed by renewable energy sources as the power generation from fossil fuels decreased.
Notes: Coal includes lignite; Misc: includes contributions from emergency diesel generator sets; *Hydro includes pumped storage generation; na = data not available.

Thermal power

Pollution from coal-based power plants

India's electricity sector consumes about 72% of the coal produced in the country. For utility power generation, India consumed 622.22 million tons of coal during 2019-20 which is less by 1% compared to 628.94 million tons during 2018-19. However coal imports for utility power generation increased by 12.3% during year 2019-20 at 69.22 million tons from 61.66 million tons during 2018-19. A large part of the Indian coal reserve is similar to Gondwana coal: it is of low calorific value and high ash content, with poor fuel value. On average, Indian coal has a gross calorific value of about 4500 Kcal/kg, whereas in Australia, for example, the GCV is about 6500 Kcal/kg. The result is that Indian power plants using India's coal supply consume about 0.7 kg of coal per kWh of power generation, whereas in the United States thermal power plants consume about 0.45 kg of coal per kWh. In 2017, India imported nearly 130 Mtoe of steam coal and coking coal, 29% of total consumption, to meet the demand in electricity, cement and steel production.
The Centre for Science and Environment has assessed the Indian coal-based power sector as one of the most resource-wasteful and polluting sectors in the world, in part due to the high ash content in India's coal. India's Ministry of Environment and Forests has therefore mandated the use of coals whose ash content has been reduced to 34% in power plants in urban, ecologically sensitive and other critically polluted areas. The coal ash reduction industry has grown rapidly in India, with current capacity topping 90 megatonnes.
Before a thermal power plant is approved for construction and commissioning in India it must undergo an extensive review process that includes environmental impact assessment. The Ministry of Environment and Forests has produced a technical guidance manual to help project proposers avoid environmental pollution from thermal power plants. As of 2016, the existing coal-fired power stations in the utility and captive power sectors were estimated to require nearly 12.5 million INR per MW capacity to install pollution control equipment to comply with the latest emission norms set out by the Ministry of Environment and Forests. In April 2020, CPCB declared that over 42,000 MW thermal power plants have outlived their lives. India has also banned imports of pet coke for use as fuel. As a signatory to the Paris Agreement, India is also reducing power generation from coal to control the emission of greenhouse gases.
The state and central power generation companies are permitted by the Government of India to minimize the cost of coal transportation using flexible coal linkage swaps from inefficient plants to efficient plants, and from plants situated far from coal mines to plants close to the pit head, leading to a reduction in the cost of power. Although coal imports for consumption in the utility sector are declining, the overall imports of steam coal are increasing as the local coal production is unable to meet the requirements of coal-fired captive power plants.

Natural gas supply constraints

The installed capacity of natural gas-based power plants was nearly 26,765 MW at the end of the financial year 2014-15. These plants were operating at overall plant load factor of 22% due to a severe shortage of natural gas in the country, and the fact that imported liquid natural gas was too expensive for power generation. Many power stations were shut down throughout the year for lack of natural gas supply. The natural gas shortage for power sector alone was nearly 100 million cubic metre per day at standard conditions. The break-even price for switching from imported coal to LNG in electricity generation was estimated to be approximately US. The Indian government has taken steps to enhance power generation from gas-based power plants by waiving import duties and taxes.
Gasification of coal or lignite or pet coke or biomass produces synthetic natural gas or syngas which is a mixture of hydrogen, carbon monoxide and carbon dioxide gases. Coal gas can be converted into synthetic natural gas by using the Fischer–Tropsch process at low pressure and high temperature. Coal gas can also be produced by underground coal gasification if the coal deposits are located deep in the ground or it is uneconomical to mine the coal. Synthetic natural gas production technologies promise to dramatically improve India's supply of natural gas. The Dankuni coal complex produces syngas that is piped to industrial users in Calcutta. Many coal-based fertiliser plants can also be economically retrofitted to produce synthetic natural gas. It is estimated that the production cost for syngas could be below US.

Retirement of old thermal power plants

India's coal-fired, oil-fired and natural gas-fired thermal power plants are inefficient and replacing them with cheaper renewable technologies offers significant potential for greenhouse gas emission reduction. India's thermal power plants emit 50% to 120% more CO2 per kWh produced compared to average emissions from their European Union counterparts. The central government plans to retire coal-based plants that are at least 25 years old and contributing excessive pollution, totalling 11,000 MW of capacity. As of 2018 there is no similar retirement plan for the captive power sector. In 2020 think tank Carbon Tracker estimated that 17% of coal-fired plants were already more expensive than new renewables and that would be 85% by 2025.
Some diesel generator plants and gas turbine plants were also decommissioned in 2016.

Renewable energy

As of 31 March 2018, India's grid-connected electricity generation capacity is about 69.02 GW from non-conventional renewable technologies and 45.29 GW from conventional renewable power or major hydroelectric power plants.
TypeCapacity
Wind34,046.00
Solar21,651.48
Small Hydro Power Projects 4,485.81
Biomass Power & Gasification and Bagasse Cogeneration8,700.80
Waste to Power138.30
Total non-conventional renewable Power - Grid Connected 69,022.39

Bids have been invited for installation of a further 115 GW, to achieve a total of 175 GW total installed capacity of non-conventional renewable power by 31 March 2022. The government has set up a fund of US$350 million to finance solar projects.

Hydro power

The hydro-electric power plants at Darjeeling and Shivanasamudram were among the first in Asia, and were established in 1898 and 1902 respectively.
India's potential for hydro power has been assessed to be about 125,570 MW at 60% load factor. India is ranked fourth globally by underutilized hydro power potential. The estimated amount of viable hydro power varies with improved technology and the cost of electricity generation from other sources. In addition, there is an estimated 6,740 MW of potential for small, mini, and micro-hydro generators, and 56 sites for pumped storage schemes with an aggregate installed capacity of 94,000 MW have been identified. In 2020, the power tariff from Solar PV clubbed with pumped storage hydro have fallen below the coal based power plant tariffs in offering base load and peak load power supply.
The installed hydro power capacity as of 31 March 2018 was approximately 45,293 MW, 13.17% of total installed utility capacity at the time. Small, mini, and micro-hydro generators add another 4,486 MW capacity. The share of this sector operated by public companies is 97%. Companies engaged in the development of hydroelectric power in India include the National Hydroelectric Power Corporation, Northeast Electric Power Company, Satluj Jal Vidyut Nigam, Tehri Hydro Development Corporation, and NTPC-Hydro.
Pumped storage schemes offer the potential for centralized peak power stations for load management in the electricity grid. They also produce secondary /seasonal power at no additional cost when rivers are flooding with excess water. Storing electricity by alternative systems such as batteries, compressed air storage systems, etc. is more costly than electricity production by standby generator. India has already established nearly 4,785 MW pumped storage capacity as part of its installed hydro power plants.

Solar power

The solar energy sector in India offers potentially enormous capacity, though little of this potential has so far been exploited. Solar radiation of about 5,000 trillion kWh per year is incident over India's land mass, with average daily solar power potential of 0.25 kWh/m2 of used land area with available commercially proven technologies. As of 31 December 2019, the installed capacity was 33.73 GW, or 2% of utility electricity generation.
Solar power plants require nearly land per MW capacity, which is similar to coal-fired power plants when life cycle coal mining, consumptive water storage and ash disposal areas are taken into account, and hydropower plants when the submergence area of the water reservoir is included. Solar plants with 1.33 million MW capacity could be installed in India on 1% of its land. Large tracts of land that is unproductive, barren and devoid of vegetation exist in all parts of India, exceeding 8% of its total area. These are potentially suitable for solar power. It has been estimated that if 32,000 square km of these waste lands were used for solar power generation,2,000 billion kWh of electricity could be produced, twice the total power generated in the year 2013-14. At a price of 4 Rs/kWh, this would result in a land annual productivity/yield of per acre, which compares favorably with many industrial areas and is many times more than the best productive irrigated agriculture lands. Building solar power plants on marginally productive lands offers the potential for solar electricity to replace all of India's fossil fuel energy requirements, and could offer per capita energy consumption at par with USA/Japan for the peak population expected during its demographic transition.
The cost of power generated by solar photovoltaics fell to per kWh in May 2017, lower than any other type of power generation in India. In the same year, the levelised tariff in US$ for solar electricity fell to 1.79 cents/kWh, far below the fuel cost for coal-based power plants in India. In 2020, the power tariff from Solar PV clubbed with pumped storage hydro or battery storage have fallen below the coal based power plant tariffs in offering base load and peak load power supply.
Land acquisition is a challenge for solar farm projects in India. Some state governments are exploring innovative ways to address land availability, for example, by deploying solar capacity above irrigation canals. This allows solar energy to be harvested while simultaneously reducing the loss of irrigation water by solar evaporation. The state of Gujarat was first to implement the Canal Solar Power Project, using solar panels on a long network of Narmada canals across the state to generate electricity. It was the first such project in India.
Synergy with other types of power generation
A major disadvantage of solar power is that it produces electricity only in daylight, and not during night time or cloudy daytime. This disadvantage can be overcome by installing grid storage, such as pumped-storage hydroelectricity. A proposed large-scale engineering project to interlink Indian rivers envisages coastal reservoirs for river waters that would double as pumped-storage hydroelectricity reservoirs. Existing and future hydropower stations can also be expanded with additional pumped-storage hydroelectricity units to cater for night time electricity consumption. Most of the groundwater pumping power required can be met directly by solar power during the day time.
Solar thermal power plants with thermal storage are also emerging as cheaper and cleaner load following power plants than fossil fuel power plants. They can respond to demand round the clock, and work as base load power plants when there is excess solar energy. A mix of solar thermal and solar photovoltaic plants offers the potential to match load fluctuations without requiring costly battery storage.

Wind power

India has the fourth largest installed wind power capacity in the world. The development of wind power in India began in the 1990s in Tamil Nadu and significantly increased in the last decade. As of 31 March 2018, the installed capacity of wind power was 34.05 GW, spread across many states of India. The largest wind power generating state is Tamil Nadu, accounting for nearly 23% of installed capacity, followed in decreasing order by Gujarat, Maharashtra, Rajasthan and Karnataka.
In 2015-16, wind power accounted for 8.5% of India's total installed power capacity, and 2.5% of the country's power output. India aims to install a total 60 GW of wind power capacity by 2022. The wind power tariff of around 2.5 INR/kWh is the cheapest of all power generation sources in India.

Biomass power

is organic matter from living organisms. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel using a range of methods which are broadly classified into thermal, chemical, and biochemical methods. Biomass, bagasse, forestry, domestic organic wastes, industrial organic wastes, organic residue from biogas plants, and agricultural residue and waste can all be used as fuel to produce electricity. Nearly 750 million tons of biomass that is not edible by cattle is available annually in India.
The total use of biomass to produce heat in India was nearly 177 Mtoe in 2013. 20% of households in India use biomass and charcoal for cooking purposes. This traditional use of biomass is being replaced by liquid petroleum gas in rural areas, resulting in increased burning of biomass in fields, This has become a major source of air pollution in nearby towns and cities.
;Torrefied biomass
Large quantities of imported coal are being used in pulverised coal-fired power stations. Raw biomass cannot be used directly in the pulverised coal mills as it is difficult to grind into fine powder due to caking. However, torrefaction makes it possible for biomass to replace coal. The hot flue gas of existing coal-fired power stations can be used as a heat source for torrefaction, so that biomass can be cofired with coal. Surplus agriculture/crop residue biomass is beginning to be used for this purpose. Instead of shutting down coal-fired power plants due to concerns over pollution, it has been argued that these units can be retrofitted economically to produce electricity from biomass. Biomass power plants can also sell Renewable Energy Certificates, increasing their profitability. Cofiring of biomass up to 10% with coal in existing pulverised coal-fired power stations is successfully implemented in India.
;Biogas
In 2011, India started a new initiative to demonstrate the utility of medium-size mixed feed biogas-fertiliser pilot plants. The government approved 21 projects with an aggregate capacity of 37,016 cubic metres per day, of which 2 projects were successfully commissioned by December 2011. India commissioned a further 158 projects under its Biogas-based Distributed/Grid Power Generation programme, with a total installed capacity of about 2 MW. In 2018, India has set a target of producing 15 million tons of biogas/bio-CNG by installing 5,000 large scale commercial type biogas plants which can produce daily 12.5 tons of bio-CNG by each plant. Rejected organic solids from biogas plants can be used in coal plants after torrefaction.
Biogas is primarily methane, and can also be used to generate protein rich feed for cattle, poultry and fish by growing Methylococcus capsulatus, a bacterium that grows directly on methane. This can be done economically in villages with low requirements for land and water. The carbon dioxide gas produced as a by-product from these units can be used in cheaper production of algae oil or spirulina from algae cultivation, which may eventually substitute for crude oil. Using biogas for protein-rich feed production is also eligible for carbon credits as this sequesters carbon from the atmosphere. There is significant potential to extract useful biomass from breweries, textile mills, fertiliser plants, the paper and pulp industry, solvent extraction units, rice mills, petrochemical plants and other industries.
The government is exploring several ways to use agro waste or biomass in rural areas to improve the rural economy. For example biomass gasifier technologies are being explored to produce power from surplus biomass resources such as rice husk, crop stalks, small wood chips and other agro-residues in rural areas. The largest biomass-based power plant in India at Sirohi, Rajasthan has a capacity of 20 MW. During 2011, India installed 25 rice husk based gasifier systems for distributed power generation in 70 remote villages of Bihar, including a total of 1.20 MW in Gujarat and 0.5 MW in Tamil Nadu. In addition, gasifier systems were installed at 60 rice mills in India.

Geothermal energy

is thermal energy generated and stored in the Earth. India's geothermal energy installed capacity is experimental, and commercial use is insignificant. According to some estimates, India has 10,600 MW of geothermal energy available. The resource map for India has been grouped into six geothermal provinces:
India has about 340 hot springs spread over the country. Of these, 62 are distributed along the northwest Himalaya, in the states of Jammu and Kashmir, Himachal Pradesh and Uttarakhand. They are found concentrated in a 30-50-km wide thermal band mostly along the river valleys. The Naga-Lusai and West Coast Provinces also manifest a series of thermal springs. The Andaman and Nicobar arc is the only place in India where volcanic activity continues, potentially a good site for geothermal energy. The Cambay geothermal belt is 200 km long and 50 km wide, with Tertiary sediments. Thermal springs have been reported from the belt although they are not of very high temperature or flow levels. High subsurface temperature and thermal fluid have been reported in deep drill wells in depth ranges of 1.7 to 1.9 km during drilling in this area. Steam blowout has also been reported in drill holes in a depth range of 1.5 to 3.4 km. The thermal springs in India's peninsular region are more related to the faults, which allow water to circulate to considerable depths. The circulating water acquires heat from the normal thermal gradient in the area, and can emerge at a high temperature.
In a December 2011 report, India identified six promising geothermal sites for the development of geothermal energy. In decreasing order of potential, these are:
Puga was chosen for the first geothermal plant, but as of December 2017 little progress had been made.

Tidal power

, also called tidal energy, is a form of hydropower that converts energy obtained from tides into useful forms of power, mainly electricity. Local effects such as shelving, funneling, reflection and resonance can increase the potential of tidal energy in certain regions.
India's potential to harness tidal energy is significant. Energy can be extracted from tides in several ways. In one method, a reservoir is created behind a barrier, or barrage, and tidal waters are allowed to pass through turbines in the barrier to generate electricity. This method requires mean tidal differences greater than 4 metres and favourable topographical conditions to keep installation costs low. The Gulf of Khambhat and the Gulf of Kutch on India's west coast, with maximum tidal ranges of 11 m and 8 m, respectively, and an average tidal range of 6.77 m and 5.23 m, are promising sites for this type of technology. The Ganges Delta in the Sundarbans, West Bengal is another possibility, although it offers significantly less recoverable energy; the maximum tidal range in Sunderbans is approximately 5 m with an average tidal range of 2.97 m. It is estimated that barrage technology could harvest about 8 GW from tidal energy in India, primarily in Gujarat. The barrage approach has several disadvantages, however, one being that a badly engineered barrage can have significant negative effects on migratory fishes, marine ecosystems and aquatic life. Integrated barrage technology plants can also be expensive to build. In December 2011, the Ministry of New & Renewable Energy, Government of India and the Renewable Energy Development Agency of West Bengal jointly approved and agreed to implement India's first 3.75 MW Durgaduani mini tidal power project.
Another tidal wave technology harvests energy from surface waves or from pressure fluctuations below the sea surface. A report from the Ocean Engineering Centre, at the Indian Institute of Technology Madras estimated the annual wave energy potential along the Indian coast is 5 to 15 MW/metre, suggesting a theoretical maximum potential for electricity harvesting along India's 7500-kilometer coastline of about 40 GW. However, the realistic economical potential is likely to be considerably less than this. A significant barrier to surface energy harvesting is that its equipment may interfere with fishing and other sea-bound vessels, particularly in unsettled weather. India built its first surface energy harvesting technology demonstration plant in Vizhinjam, near Thiruvananthapuram.
The third approach to harvesting tidal energy is ocean thermal energy technology. This approach harvests the solar energy trapped in ocean waters. Oceans have a thermal gradient, the surface being much warmer than the deeper levels of the ocean. This thermal gradient may be harvested using the modified Rankine cycle. India's National Institute of Ocean Technology has attempted this approach without success. In 2003, NIOT attempted to build and deploy a 1 MW demonstration plant with Saga University of Japan, but mechanical problems prevented success. After initial tests near Kerala, the unit was scheduled for redeployment and further development in the Lakshadweep Islands in 2005.

Nuclear power

As of 31 March 2019, India had 6.78 GW of installed nuclear power generation capacity or nearly 2% of total installed utility power generation capacity. Nuclear plants generated 37,812 million kWh at 63.67% PLF in 2018-19.
India's nuclear power plant development began in 1964. India signed an agreement with General Electric for the construction and commissioning of two boiling water reactors at Tarapur. In 1967, this effort was placed under India's Department of Atomic Energy. In 1971, India set up its first pressurized heavy water reactors with Canadian collaboration in Rajasthan.
In 1987, India created the Nuclear Power Corporation of India Limited to commercialize nuclear power. The Nuclear Power Corporation of India is a public sector enterprise, wholly owned by the Government of India, under the administrative control of the Department of Atomic Energy. The state-owned company has ambitious plans to establish plants totalling 63 GW generation capacity by 2032.
India's nuclear power generation effort is subject to many safeguards and oversights. Its environmental management system is ISO-14001 certified, and it undergoes peer review by the World Association of Nuclear Operators, including a pre-start-up peer review. The Nuclear Power Corporation of India Limited commented in its annual report for 2011 that its biggest challenge is to address public and policymaker perceptions about the safety of nuclear power, particularly after the Fukushima Daiichi nuclear disaster in Japan.
In 2011, India had 18 pressurized heavy water reactors in operation, with another four projects launched totalling 2.8 GW capacity. India is in the process of launching its first prototype fast breeder reactor using plutonium-based fuel obtained by reprocessing the spent fuel of first-stage reactors. The prototype reactor is located in Tamil Nadu and has a capacity of 500MW.
India has nuclear power plants operating in the following states: Maharashtra, Gujarat, Rajasthan, Uttar Pradesh, Tamil Nadu and Karnataka. These reactors have an installed electricity generation capacity of between 100 MW and 540 MW each. The Kudankulam nuclear power plant is the single largest nuclear power station in India. KNPP Unit 1 with a capacity of 1,000 MWe was commissioned in July 2013, while Unit 2, also with a capacity of 1,000 MWe, attained criticality in 2016. Two additional units are under construction. The plant has suffered multiple shutdowns, leading to calls for an expert panel to investigate.
In 2011, uranium was discovered in the Tummalapalle uranium mine, the country's largest uranium mine and possibly one of the world's largest. The reserves were estimated at 64,000 tonnes, and could be as large as 150,000 tonnes. The mine began operation in 2012.
India's share of nuclear power plant generation capacity is 1.2% of worldwide nuclear power production capacity, making it the 15th largest nuclear power producer. India aims to supply 9% of its electricity needs with nuclear power by 2032 and 25% by 2050. Jaitapur Nuclear Power Project, India's largest nuclear power plant project, is planned to be implemented in partnership with Électricité de France under an agreement signed on 10 March 2018.
India's government is developing up to 62 additional nuclear reactors, mostly using thorium fuel, which it expects to be operational by 2025. It is the "only country in the world with a detailed, funded, government-approved plan" to focus on thorium-based nuclear power.

Electricity transmission and distribution

As of 2013, India has a single wide area synchronous grid that covers the entire country except distant islands.
CapacitySubstations
Transmission lines
c.km / MVA ratio
HVDC ± 220 kV & above22,50015,5560.691
765 kV197,50036,6730.185
400 kV292,292173,1720.707
220 kV335,696170,7480.592
220 kV & above847,988396,1490.467


The total length of high voltage direct current transmission lines would be enough to form a square matrix of area 266 km2 over the entire area of the country. This represents a total of almost 20% more high voltage transmission lines than that of the United States. However the Indian grid transmits far less electricity. The installed length of transmission lines of 66 kV and above is . The length of secondary transmission lines is as of 31 March 2018. The spread of total transmission lines would be sufficient to form a square matrix of area 0.36 km2 over the entire area of the country.
The all-time maximum peak load met was 182,610 MW on 30 May 2019. The maximum achieved demand factor of substations is nearly 60% at the 220 kV level. However the operational performance of the system is not satisfactory in meeting peak electricity loads. This has led to the initiation of detailed forensic engineering studies, with a plan to make capital investments in a smart grid that maximises the utility of the existing transmission infrastructure.
The introduction of an availability based tariff originally helped to stabilise the Indian transmission grids. However, as the grid transitions to power surplus the ABT has become less useful. The July 2012 blackout, affecting the north of the country, was the largest power grid failure in history as measured by the number of people affected.
India's aggregate transmission and commercial losses were nearly 21.35% in 2017-18. This compares unfavorably to the total ATC loss in the electricity sector of the United States, which was only 6.6% out of 4,404 billion kWh electricity supplied during the year 2018. The Indian government set a target of reducing losses to 17.1% by 2017 and to 14.1% by 2022. A high proportion of non-technical losses are caused by illegal tapping of lines, faulty electric meters and fictitious power generation that underestimates actual consumption and also contributes to reduced payment collection. A case study in Kerala estimated that replacing faulty meters could reduce distribution losses from 34% to 29%.

Regulation and administration

The Ministry of Power is India's top central government body regulating the electrical energy sector in India. The ministry was created on 2 July 1992. It is responsible for planning, policy formulation, processing of projects for investment decisions, monitoring project implementation, training and manpower development, and the administration and enactment of legislation in regard to power generation, transmission and distribution. It is also responsible for the administration of India's Electricity Act, the Energy Conservation Act and has the responsibility of undertaking amendments to these Acts when necessary to meet the Indian government's policy objectives.
Electricity is a concurrent list subject at Entry 38 in List III of the seventh Schedule of the Constitution of India. In India's federal governance structure, this means that both the central government and India's state governments are involved in establishing policy and laws for the electricity sector. This requires the central government and individual state governments to enter into memoranda of understanding to help expedite projects in the individual states. To disseminate information to the public on power purchases by the distribution companies, the government of India recently started posting data on its website on a daily basis.

Trading

Bulk power purchasers can buy electricity on a daily basis for short, medium and long term durations from a reverse e-auction facility. The electricity prices transacted by the reverse e-auction facility are far less than the prices agreed under bilateral agreements. The commodity derivative exchange Multi Commodity Exchange has sought permission to offer electricity future markets in India. The Government of India is also planning reverse procurement process in which generators and discoms with surplus power can seek e-bids for power supply for up to a one-year period, to put an end to bilateral contracts and determine the market-based price for electricity.

Government-owned power companies

India's Ministry of Power administers central government-owned companies involved in the generation of electricity in India. These include the National Thermal Power Corporation, the SJVN, the Damodar Valley Corporation, the National Hydroelectric Power Corporation and the Nuclear Power Corporation of India. The Power Grid Corporation of India is also administered by the Ministry; it is responsible for the inter-state transmission of electricity and the development of the national grid.
The Ministry works with state governments on matters related to state government-owned corporations in India's electricity sector. Examples of state corporations include the Telangana Power Generation Corporation, the Andhra Pradesh Power Generation Corporation Limited, the Assam Power Generation Corporation Limited, the Tamil Nadu Electricity Board, the Maharashtra State Electricity Board, the Kerala State Electricity Board, and Gujarat Urja Vikas Nigam Limited.

Funding of power infrastructure

India's Ministry of Power administers the Rural Electrification Corporation Limited and the Power Finance Corporation Limited. These central-government-owned public sector enterprises provide loans and guarantees for public and private electricity sector infrastructure projects in India. Excessive plant construction loans at 75% of overestimated costs on overrated plant capacities have led to stranded assets of US$40 to 60 billion. The central and state-owned power generators escaped this crisis as they had entered PPAs with state-owned monopolistic discoms on a cost-plus basis at higher than prevailing market power tariffs, without undergoing competitive bidding process. Many direct and indirect subsidies are given to various sectors.

Budgetary support

After the enactment of Electricity Act 2003 budgetary support to the power sector is negligible. Many State Electricity Boards were separated into their component parts after the act came into force, creating separate entities for generating, transmitting and distributing power.

Human resource development

The rapid growth of the electricity sector in India has generated high demand for trained personnel. India is making efforts to expand energy education and to enable existing educational institutions to introduce courses related to energy capacity addition, production, operations and maintenance. This initiative includes conventional and renewable energy.
The Ministry of New and Renewable Energy announced that State Renewable Energy Agencies are being supported to organise short-term training programmes for installation, operation and maintenance and repair of renewable energy systems in locations where intensive renewable energy programmes are being implemented. Renewable Energy Chairs have been established at the Indian Institute of Technology Roorkee and the Indian Institute of Technology Kharagpur. The Central Training Institute Jabalpur is a training institute for power distribution engineering and management. The NTPC School of Business Noida has initiated an energy-centred two year post-graduate diploma in management program and a one year post-graduate diploma in management program, to cater to the growing need for management professionals in this area. Education and availability of skilled workers is expected to be a key challenge in India's effort to expand its electricity sector.

Problems with India's power sector

India's electricity sector faces many issues, including:
  1. Inadequate last mile connectivity. The country already has adequate generation and transmission capacity to meet the full consumer demand, both temporally and spatially. However, due to the lack of last-mile link-up between all electricity consumers and a reliable power supply, many consumers depend on diesel generators. Nearly 80 billion kWh of electricity is generated annually in India by diesel generator sets that consume nearly 15 million tons of diesel oil. Over 10 million households use battery storage UPS as back-ups in case of load shedding. India imports nearly US$2 billion worth of battery storage UPS every year. As overhead lines cause distribution problems during rain and wind storms, there is a plan to lay buried cables from low voltage substations to supply cheaper emergency power in cities and towns and thus reduce diesel oil consumption by diesel generator sets and the installation of UPS systems.
  2. Demand build up measures. Electricity-intensive industries consume the cheaper electricity available from the grid instead of running their own coal/gas/oil fired captive power plants. The captive power generation capacity by such plants is nearly 53,000 MW, and they are mainly established in steel, fertilizer, aluminium, cement, etc. industries. These plants can draw cheaper electricity from the grid on short term open access basis, avoiding their own higher cost of electricity generation and diverting power from other consumers. Some of these idling captive power plants can be used for ancillary services or grid reserve service and earn extra revenue.
  3. Unequal electricity distribution. Almost all households have access to electricity. However, most households find the electricity supply intermittent and unreliable. At the same time, many power stations are idling for lack of electricity demand and the idling generation capacity is sufficient to supply the needs of households lacking electricity three times over.
  4. Erratic power pricing. In general, industrial and commercial consumers subsidize domestic and agricultural consumers. Government giveaways such as free electricity for farmers, created partly to curry political favor, have depleted the cash reserves of state-run electricity-distribution system and led to debts of. This has financially crippled the distribution network, and its ability to pay to purchase power in the absence of subsidies from state governments. This situation has been worsened by state government departments that do not pay their electricity bills.
  5. Over-rated capacity. Many coal-fired plants are overrated above the actual maximum continuous rating capacity. to allow the plant cost to be inflated. These plants operate 15 to 10% below their declared capacity on a daily basis and rarely operate at declared capacity, undermining grid stability.
  6. Lack of timely information on load and demand. Intraday graphs at 15-minute or more frequent intervals are required to understand the shortcomings of the power grid with respect to grid frequency, including comprehensive data collected from SCADA for all grid-connected generating stations and load data from all substations.
  7. Lack of adequate coal supply: Despite abundant reserves of coal, power plants are frequently under-supplied. India's monopoly coal producer, state-controlled Coal India, is constrained by primitive mining techniques and is rife with theft and corruption. Poor coal transport infrastructure has worsened these problems. Most of India's coal lies under protected forests or designated tribal lands and efforts to mine additional deposits have been resisted.
  8. Poor gas pipeline connectivity and infrastructure. India has abundant coal bed methane and natural gas potential. However a giant new offshore natural gas field has delivered far less gas than claimed, causing a shortage of natural gas.
  9. Transmission, distribution and consumer-level losses. Losses exceed 30%, including the auxiliary power consumption of thermal power stations and fictitious electricity generation by wind generators, solar power plants & independent power producers, etc.
  10. Resistance to energy efficiency in the residential building sector. Continuous urbanization and the growth of population result in increased power consumption in buildings. The belief still predominates among stakeholders that energy-efficient buildings are more expensive than conventional buildings, adversely affecting the "greening" of the building sector.
  11. Resistance to hydroelectric power projects. Hydroelectric power projects in India's mountainous north and northeast regions have been slowed down by ecological, environmental and rehabilitation controversies, coupled with public interest litigation.
  12. Resistance to nuclear power generation. Political activism since the Fukushima disaster has reduced progress in this sector. The track record of executing nuclear power plants is also very poor in India.
  13. Theft of power. The financial loss due to theft of electricity is estimated at around $16 billion yearly.
Key implementation challenges for India's electricity sector include efficient performance of new project management and execution, ensuring availability and appropriate quality of fuel, developing the large coal and natural gas resources available in India, land acquisition, obtaining environmental clearances at state and central government level, and training skilled manpower.

Foreign electricity trade

India's National Grid is synchronously interconnected to Bhutan, and asynchronously linked with Bangladesh and Nepal. An interconnection with Myanmar, and an undersea interconnection to Sri Lanka have also been proposed.
India has been exporting electricity to Bangladesh and Nepal and importing excess electricity from Bhutan. In 2015, Nepal imported 224.21 MW of electric power from India, and Bangladesh imported 500MW. In 2018 Bangladesh proposed importing 10,000 MW power from India.
Bangladesh, Myanmar and Pakistan produce substantial amounts of natural gas for electricity generation. Bangladesh, Myanmar and Pakistan produce 55 million cubic metres per day, 9 mcmd and 118 mcmd respectively, out of which 20 mcmd, 1.4 mcmd and 34 mcmd are consumed for electricity generation. Natural gas production in India is not even adequate to meet non-electricity requirements. There is thus an opportunity for mutually beneficial trading in energy resources with these countries. India could supply surplus electricity to Pakistan and Bangladesh in return for the natural gas imports by gas pipelines. Similarly, India can develop hydro power projects in Bhutan, Nepal and Myanmar on a build-operate-transfer basis. India might also be able to enter into long term power purchase agreements with China for developing the hydro power potential of the Yarlung Tsangpo Grand Canyon in the Brahmaputra River basin of Tibet. India could also supply its surplus electricity to Sri Lanka by undersea cable link.

Electricity as substitute to imported LPG and kerosene

India's net import of liquefied petroleum gas is 6.093 million tons and the domestic consumption is 13.568 million tons with Rs. 41,546 crores subsidy to domestic consumers in 2012-13. The LPG import content is nearly 40% of total consumption in India. The affordable electricity retail tariff to replace LPG in domestic cooking is 6.47 Rs/Kwh, while the retail price of LPG cylinder is Rs 1000 with 14.2 kg LPG content. Replacing LPG consumption with electricity would reduces imports substantially.
The domestic consumption of kerosene is 7.349 million tons with Rs. 30,151 crores subsidy to the domestic consumers in the year 2012-13. The subsidised retail price of kerosene is 13.69 Rs/litre whereas the export/import price is 48.00 Rs/litre. The affordable electricity retail tariff to replace kerosene in domestic cooking is 6.00 Rs/kWh when the kerosene retail price is 48 Rs/litre.
In 2014-15, the plant load factor of coal-fired thermal power stations was only 64.46%. These stations can run above 85% PLF if there is adequate electricity demand. The additional electricity generation at 85% PLF is nearly 240 billion units, enough to replace all the LPG and kerosene consumption in domestic sector. The incremental cost of generating additional electricity is only the coal fuel cost, less than 3 Rs/Kwh. Enhancing the PLF of coal-fired stations and encouraging domestic electricity consumers to substitute electricity in place of LPG and kerosene in household cooking would reduce government subsidies. It has been proposed that domestic consumers who are willing to surrender subsidized LPG/kerosene permits should be given a free electricity connection and a subsidized electricity tariff.
Since 2017, IPPs have offered to sell solar and wind power below 3.00 Rs/Kwh to feed into the high voltage grid. After considering distribution costs and losses, solar power appears to be a viable economic option for replacing the LPG and kerosene used in the domestic sector.

Electric vehicles

The retail prices of petrol and diesel are high enough in India to make electricity driven vehicles relatively economical. The retail price of diesel was 65.00 Rs/litre in 2017-18, and the retail price of petrol was 70.00 Rs/litre. The electricity retail price to replace diesel would be 12.21 Rs/Kwh, and the comparable number to replace petrol would be 17.79 Rs/Kwh. In 2012-13, India consumed 15.744 million tons of petrol and 69.179 million tons of diesel, both mainly produced from imported crude oil.
Electricity driven vehicles are expected to become popular in India when energy storage/battery technology offers improved range, longer life and lower maintenance. Vehicle to grid options are also attractive, potentially allowing electric vehicles to help to mitigate peak loads in the electricity grid. The potential for continuous charging of electric vehicles through wireless electricity transmission technology is being explored by Indian companies and others.

Energy reserves

India has abundant potential solar wind, hydro and biomass power. In addition, as of January 2011 India had approximately 38 trillion cubic feet of proven natural gas reserves, the world's 26th largest reserve. The United States Energy Information Administration estimates that India produced approximately 1.8 Tcf of natural gas in 2010 while consuming roughly 2.3 Tcf of natural gas. India already produces some coalbed methane and has major potential to expand this source of cleaner fuel. India is estimated to have between 600 and 2000 Tcf of shale gas resources.