Cornish engine valve gear


opens and closes valves in the correct order. In rotating engines valve timings can be driven by eccentrics or cranks, but in non-rotative beam engines these options are not available. In the Cornish engine valves are driven either manually or through ‘plug rods’ and tappets driven from the beam. This permits the insertions of delays at various points in the cycle, allowing a Cornish Engine to vary from one stroke in ten minutes, to ten or more strokes in one minute, but also leads to some less familiar components when compared with rotative engines.

Valve and valve gear position and linkage

Cornish Engines are large, even the exhaust valve on the Cruquius engine is 26 inches in diameter. To limit pipework and linkages it makes sense to place the 'driving position' adjacent to the cylinder. The valves are controlled from three horizontal rods - or arbors - mounted in a frame. These have handles to rock them backwards and forwards operating the valves.. The three arbors control:
Top arbor: Steam valve,
Middle arbor: Equilibrium valve, and
Bottom arbor: Exhaust and injection valves.
The valves are weighted to maintain them in the open position, either by weights hung directly from lugs on the arbors or linked through rods to weights, with treadles to allow adjustment, on the floor below.
In front of the arbors, in a position where they can move the handles up or down as required are one or two plug rods. These move with the beam, being connected with the parallel motion to limit them to a vertical path.

Valve Gear components

In Cornish Engines, unlike steam locomotives, the valve sequence can be operated either automatically or manually. Cornish engines are started manually, and run until the cylinder pressure and condenser vacuum are sufficient for the machine to run automatically. Therefore the valve positions have to be automatically determined but subject to manual alteration, and this leads to some less common components and mechanisms. The image below shows many of these items, together with their layout and orientation in the engine.

Horns, Handles, Plug Rods and Tappets

The handles attached to the arbors rotate them and, via various levers and rods, open and close the valves. The plug rods are two vertical rods attached, via the parallel motion gear, to the beam. As well as providing convenient manual control, the handles can be moved by the plug rod, which have small projections – tappets – to catch on the handles. In the case of the steam arbor where the valve needs to be held down for a longer, and variable period, the tappets take the form of longer adjustable rods attached to the plug rod.

Quadrants, Scoggan levers, and cataracts.

As the arbors turn – moved by the handles – they rotate the quadrants. These can be used to keep the valves closed with the aide of a catch.
The quadrant is released when the lever is raised, usually by the ‘cataract’ on the floor below. This is a hydraulic timing device, set by a tappet on the plug rod striking it at the bottom of the indoor stroke. After an appropriate delay the cataract raises the associated rod and cataract loop which, by releasing the quadrant, enables the arbor, and valve to move. The cataract loop has an associated screw thread to allow for changes in the relative timing of the steam and exhaust events as it slowly lifts at the end of each cycle. In some engines a second cataract is present which manages the transition from the indoor stroke to the outdoor stroke similarly.

Locking Quadrants.

Even when operating the engine manually there are limits on how the engine can be configured. It is never appropriate to have both the exhaust and equilibrium valves open at the same time. To avoid this an additional pair of quadrants are used as “locking quadrants”. These are oriented so that in the closed position they lie almost touching, allowing either of them to move to the open position. However once one is open it blocks the other from opening. Note that Pole describes a more complex system of tappets and levers to achieve the same mutual locking effect between the exhaust and equilibrium valves.

Assembled valve gear and its sequence

The above components can be assembled into a frame allowing the complete engine to be run either manually or automatically. The three arbor form is relatively fixed but, as can be seen from some of the images, there are variations in the position of the various components along them, the number of both plug rods and cataracts, and the level of ornamentation applied.
The Cornish engine has two distinct parts to its cycle – the indoors stroke, where the piston descends from the top of the cylinder, and the outdoor stroke where it is moving upwards. On the indoor stroke the plug rod needs to close the steam and exhaust valves, and on the rising outdoor stroke, the equilibrium valve. Thus the first two valves are constructed to be closed by moving their handles down and the equilibrium valve is closed upwards.
The following table based on Pole and Winton shows a complete cycle of a Cornish Engine, with the various actions taken by the valves. It also shows the positions of the handles to simplify comparison with videos of such engines. The valves which are open are highlighted.

Driving the engine - Stopping and Starting

Early beam engines were driven by direct manual operation of the valves. The absence of crankshafts, which limit piston excursions, made this difficult. As one author said “All this precision was required too from a mercenary attendant fourteen times every minute, at the hazard of the total destruction of the apparatus.” There would be some warning before the engine self destructed, since another author commented cavalierly “The concussion caused by the blow of the catch piece against the blocks serves as an intimation to the engine attendant that the pressure of the steam is becoming too high”. Later more mundane approaches, such as bells and eventually automatic limiting devices were added.
The desire to make the mechanism automatic – or self-acting – lead through various stages to the plug-rod and tappet system described above. This runs the engine satisfactorily in a steady state, but changes in steam ressure or load will still require adjustments. Human intervention is required for the starting and stopping of the engine. Starting is challenging for several reasons:
Here is the starting procedure, as described in 1863:
Stopping the engine is less complex, since it is quiescent at the end of its cycle until reawakened by the cataract, which raises the cataract rod lifting the latches from the quadrant arbor. The cataract is propelled not by steam power, but a falling weight, and can be stopped with little force. A small pin through the cataract rod is sufficient to stop it from rising, and thus stop the engine.

Variations

The three arbor form of valve gear is relatively fixed, with individual variations in component positioning and count. Some engines using a single cataract to restart the indoor stroke, while others use an additional one to allow for a delay before starting the outdoor stroke. This is used for example on the Museum De Cruquius engine to provide time to fill the pump buckets. A later variant of the Cornish Engine is the Bull engine, which dispenses with the beam by having the cylinder mounted directly over the pump leading to significant valve gear differences. As one source describes
There are also compound Cornish Engines, which inevitably need extra connections to drive the additional valves linking the cylinders. Andre describes one near Saarbrucken with an additional beam just to work the steam distributing valves. The Cruquius Engine in the Netherlands is complex, being an annular compound, and constructed ‘upside down’, leaving the exhaust valve at floor level with the steam and equilibrium valve on the floor below. Nonetheless it is controlled by the same three arbors in the usual order.
The central role of the valve gear arbors in operating a Cornish Engine also makes them an appropriate place to position other controls. These can include Governor valves to limit the rate of input steam flow, cut-off settings, lubrication arrangements and adjustments to modify the delay imposed by the cataract.