Contact tracing


In public health, contact tracing is the process of identification of persons who may have come into contact with an infected person and subsequent collection of further information about these contacts. By tracing the contacts of infected individuals, testing them for infection, isolating or treating the infected and tracing their contacts in turn, public health aims to reduce infections in the population. Diseases for which contact tracing is commonly performed include tuberculosis, vaccine-preventable infections like measles, sexually transmitted infections, blood-borne infections, ebola, some serious bacterial infections, and novel infections. The goals of contact tracing are:
Contact tracing has been a pillar of communicable disease control in public health for decades. The eradication of smallpox, for example, was achieved not by universal immunization, but by exhaustive contact tracing to find all infected persons. This was followed by isolation of infected individuals and immunization of the surrounding community and contacts at-risk of contracting smallpox.
In cases of diseases of uncertain infectious potential, contact tracing is also sometimes performed to learn about disease characteristics, including infectiousness. Contact tracing is not always the most efficient method of addressing infectious disease. In areas of high disease prevalence, screening or focused testing may be more cost-effective.
Partner notification, also called partner care, is a subset of contact tracing aimed specifically at informing sexual partners of an infected person and addressing their health needs.

Steps in contact tracing

Contact tracing generally involves the following steps:
Although contact tracing can be enhanced by letting patients provide information, medication, and referrals to their contacts, evidence demonstrates that direct public health involvement in notification is most effective.

Relevance of contacts

The types of contacts that are relevant for public health management vary with the communicable disease because of differing modes of transmission. For sexually transmitted infections, sexual contacts of the index case are relevant, as well as any babies born to the index case. For blood-borne infections, blood transfusion recipients, contacts who shared a needle, and anyone else who could have been exposed to the blood of the index case are relevant. For pulmonary tuberculosis, people living in the same household or spending a significant amount of time in the same room as the index case are relevant.

Outbreaks

Although contact tracing is most commonly used for control of diseases, it is also a critical tool for investigating new diseases or unusual outbreaks. For example, as was the case with SARS, contact tracing can be used to determine if probable cases are linked to known cases of the disease, and to determine if secondary transmission is taking place in a particular community.
Contact tracing has also been initiated among flight passengers during the containment phase of larger pandemics, such as the 2009 pandemic H1NI influenza. However, there continue to be large challenges in achieving the goals of contact tracing during such chaotic events. Development of better guidelines and strategies for pandemic contact tracing continues.

Technology

Case management

Case management software is often used by contact tracers to maintain records of cases and contact tracing activities. This is typically a cloud database that may have specialized features such as the ability to use SMS or email directly within the software to notify people believed to have been in close contact with someone carrying an infectious disease. Vendors offering contact tracing case management software include Salesforce, Microsoft and .

Mobile phones

Smartphones can provide proximity information useful for contact tracing using GPS, Bluetooth or Wifi signals. Facebook Labs patented the use of Bluetooth on smartphones for this in 2018. On 10 April 2020, Apple and Google, who account for most of the world's mobile operating systems, announced COVID-19 apps for iOS and Android. Relying on Bluetooth Low Energy wireless radio signals for proximity information, the new tools would warn people that they had been in contact with who are infected by SARS-CoV-2.

Protocols

Various protocols, such as Pan-European Privacy-Preserving Proximity Tracing, Whisper Tracing Protocol, Decentralized Privacy-Preserving Proximity Tracing, TCN Protocol, Contact Event Numbers, Privacy Sensitive Protocols And Mechanisms for Mobile Contact Tracing and others, are being discussed to preserve user privacy.
The DP-3T and TCN protocols are currently used by Switzerland, Austria, Estonia, Finland, and Italy. While the UK, France, Australia, New Zealand, and Singapore use PEPP-PT or BlueTrace based systems.

Ethical and legal issues

Challenges with contact tracing can arise related to issues of medical privacy and confidentiality. Public health practitioners often are mandated reporters, required to act to contain a communicable disease within a broader population and also ethically obliged to warn individuals of their exposure. Simultaneously, infected individuals have a recognized right to medical confidentiality. Public health teams typically disclose the minimum amount of information required to achieve the objectives of contact tracing. For example, contacts are only told that they have been exposed to a particular infection, but not informed of the person who was the source of the exposure.
Some activists and health care providers have expressed concerns that contact tracing may discourage persons from seeking medical treatment. for fear of loss of confidentiality and subsequent stigma, discrimination, or abuse. This has been of particular concern regarding contact tracing for HIV. Public health officials have recognized that the goals of contact tracing must be balanced with the maintenance of trust with vulnerable populations and sensitivity to individual situations.