Charging station


An electric vehicle charging station, also called EV charging station, electric recharging point, charging point, charge point, electronic charging station, and electric vehicle supply equipment, is an element in an infrastructure that supplies electric energy for the recharging of plug-in electric vehicles—including electric cars, neighborhood electric vehicles and plug-in hybrids.
For charging at home or work, some electric vehicles have converters on board that can plug into a standard electrical outlet or a high-capacity appliance outlet. Others either require or can use a charging station that provides electrical conversion, monitoring, or safety functionality. These stations are also needed when traveling, and many support faster charging at higher voltages and currents than are available from residential EVSEs. Public charging stations are typically on-street facilities provided by electric utility companies or located at retail shopping centers, restaurants and parking places, operated by a range of private companies.
Charging stations provide a range of heavy duty or special connectors that conform to the variety of standards. For common DC rapid charging, multi-standard chargers equipped with two or three of the Combined Charging System, CHAdeMO, and AC fast charging has become the de facto market standard in many regions.

Charging station types

Charging stations fall into four basic categories:
  1. Residential charging stations: An EV owner plugs into a standard receptacle when he or she returns home, and the car recharges overnight. A home charging station usually has no user authentication, no separate metering, but may require wiring a dedicated circuit to have faster charging. Some portable chargers can also be wall mounted as charging stations.
  2. Charging while parked – a private or commercial venture for a fee or free, sometimes offered in partnership with the owners of the parking lot. This charging may be slow or high speed and often encourages EV owners to recharge their cars while they take advantage of nearby facilities. It can include parking for an organization's own employees, parking at shopping malls, small centers, and public transit stations. Typically, AC Type1 / Type2 plugs are used.
  3. Fast charging at public charging stations >40 kW, capable of delivering over of range in 10–30 minutes. These chargers may be at rest stops to allow for longer distance trips. They may also be used regularly by commuters in metropolitan areas, and for charging while parked for shorter or longer periods. Common examples are J1772, Type 2 connector, Combined charging system, CHAdeMO, and Tesla Superchargers.
  4. Battery swaps or charges in under 15 minutes. A specified target for CARB credits for a zero-emission vehicle is adding 200 miles to its range in under 15 minutes. In 2014, this was not possible for charging electric vehicles, but it is achievable with EV battery swaps. It intends to match the refueling expectations of regular drivers and give crane mobile support for discharged vehicles where there is no charging station.
Battery capacity and the capability of handling faster charging are both increasing, and methods of charging have needed to change and improve. New options have also been introduced. The differing needs and solutions of various manufacturers has slowed the emergence of standard charging methods, and in 2015, there is a strong recognition of the need for standardization.

Charging time

The charging time depends on the battery capacity and the charging power. In simple terms, the time rate of charge depends on the charging level used, and the charging level depends on the voltage handling of the batteries and charger electronics in the car. The U.S.-based SAE International defines Level 1 as the slowest, Level 2 in the middle and Level 3 as the fastest. Level 3 charge time can be as fast as 30 minutes for an 80% charge, although there has been serious industry competition about whose standard should be widely adopted. Charge time can be calculated using the formula: Charging Time = Battery Capacity / Charging Power
The usable battery capacity of a first-generation electric vehicle, such as the original Nissan Leaf, is about 20 kWh, giving it a range of about. Tesla was the first company to introduce longer range mass production electric vehicles, initially releasing their Model S with battery capacities of 40 kWh, 60 kWh and 85 kWh, with the latter having an estimated range of about. Plug-in hybrid vehicles have capacity of roughly 3 to 20 kWh, for an electrical range of 20 to 80 kilometers, but the gasoline engine ensures the full range of a conventional vehicle.
For normal charging, car manufacturers have built a battery charger into the car. A charging cable is used to connect it to the electrical network to supply 230 volt AC current. For quicker charging, manufacturers have chosen two solutions:
Power supplyPowerVoltageMax. currentCharging time
Single phase3.3 kW230 V AC16 A5–6 hours
Single phase7.4 kW230 V AC32 A2-2½ hours
Three phase11 kW400 V AC16 A1½-2 hours
Three phase22 kW400 V AC32 A44–55 minutes
Three phase43 kW400 V AC63 A22–28 minutes
Direct current 50 kW400–500 V DC100–125 A19–24 minutes
Direct current 120 kW300–500 V DC300–350 A8–10 minutes

The user finds charging an electric vehicle as simple as connecting a normal electrical appliance; however to ensure that this operation takes place in complete safety, the charging system must perform several safety functions and dialogue with the vehicle during connection and charging.

Costs

In 2017, Tesla gave the owners of its Model S and Model X cars a credit that gives 400 kWh for free at a Supercharger. After that credit is used, drivers using Tesla Superchargers have to pay per kWh. The price ranges from $0.06 to $0.26 per kWh in the United States. Tesla superchargers are only usable by Tesla vehicles.
Other charging networks are available for non-Tesla vehicles. The Blink network of chargers has both Level 2 and DC Fast Chargers and charges separate rates for members and non members. Their prices range from $0.39 to $0.69 per kWh for members and $0.49 to $0.79 per kWh for non members, depending on location. The ChargePoint network has free chargers and paid chargers that drivers activate with a free membership card. The paid charging stations' prices are based on local rates. Other networks use similar payment methods as typical gas stations, in which one pays with cash or a credit card per kWh of electricity.

Safety

Although the rechargeable electric vehicles and equipment can be recharged from a domestic wall socket, a charging station is usually accessible to multiple electric vehicles and has additional current or connection sensing mechanisms to disconnect the power when the EV is not charging.
There are two main types of safety sensor:
Until 2013, there was an issue where Blink chargers were overheating and causing damage to both charger and car. The solution employed by the company was to reduce the maximum current.

Different Charging Modes

IEC 61851-1 - the International standard for electric vehicle conductive charging system has defined 4 Modes of EV charging.

Mode 1: Domestic socket and extension cord

The vehicle is connected to the power grid through standard socket-outlets present in residences, which depending on the country are usually rated at around 10 A. To use mode 1, the electrical installation must comply with the safety regulations and must have an earthing system, a circuit breaker to protect against overload and an earth leakage protection. The sockets have blanking devices to prevent accidental contacts.
The first limitation is the available power, to avoid risks of:
The second limitation is related to the installation's power management.
The vehicle is connected to the main power grid via household socket-outlets. Charging is done via a single-phase or three-phase network and installation of an earthing cable. A protection device is built into the cable. This solution is more expensive than Mode 1 due to the specificity of the cable.

Mode 3: Specific socket on a dedicated circuit

The vehicle is connected directly to the electrical network via specific socket and plug and a dedicated circuit. A control and protection function is also installed permanently in the installation. This is the only charging mode that meets the applicable standards regulating electrical installations. It also allows load shedding so that electrical household appliances can be operated during vehicle charging or on the contrary optimize the electric vehicle charging time.

Mode 4: Direct current (DC) connection for fast recharging

The electric vehicle is connected to the main power grid through an external charger. Control and protection functions and the vehicle charging cable are installed permanently in the installation.

Different Charging Levels

The Society of Automotive Engineering defines the general physical, electrical, communication and performance requirements for the EV charging systems used in North America, as part of standard SAE J1772. Below are the different charging levels that are practiced in North American market.
Based on the rated power, voltage and current, the charging levels in North America are classified into three categories:
Charging stations for electric vehicles may not need much new infrastructure in developed countries, less than delivering a new alternative fuel over a new network.
The stations can leverage the existing ubiquitous electrical grid and home recharging is an option, since most driving is local over short distances which reduces the need for charging mid-trip. For example, in the United States, 78% of commutes are less than round-trip.
Nevertheless, longer drives between cities and towns require a network of public charging stations or another method to extend the range of electric vehicles beyond the normal daily commute. One challenge in such infrastructure is the level of demand: an isolated station along a busy highway may see hundreds of customers per hour if every passing electric vehicle has to stop there to complete the trip. In the first half of the 20th century, internal combustion vehicles faced a similar infrastructure problem.
Currently charging stations are being installed by public authorities, commercial enterprises and some major employers in order to stimulate the market for vehicles that use alternative fuels to gasoline and diesel fuels. For this reason, most charge stations are currently either provided gratis or accessible to members of certain groups without significant charge.
, around 50,000 non-residential charging points were deployed in the U.S., Europe, Japan and China., there are 3,869 CHAdeMO quick chargers deployed around the world, with 1,978 in Japan, 1,181 in Europe and 686 in the United States, 24 in other countries., Estonia is the first and only country that had completed the deployment of an EV charging network with nationwide coverage, with 165 fast chargers available along highways at a maximum distance of between, and a higher density in urban areas.
, there were 800,000 electric vehicles and 18,000 charging stations in the United States., 5,678 public charging stations existed across the United States, with 16,256 public charging points, of which 3,990 were located in California, 1,417 in Texas, and 1,141 in Washington., about 15,000 charging stations had been installed in Europe.
, Norway, which has the highest electric ownership per capita, had 4,029 charging points and 127 quick charging stations. As part of its commitment to environmental sustainability, the Dutch government initiated a plan to establish over 200 fast charging stations across the country by 2015. The rollout will be undertaken by Switzerland-based power and automation company ABB and Dutch startup, and will aim to provide at least one station every 50 kilometres for the Netherlands' 16 million residents. In addition to that, the E-laad foundation installed about 3000 public charge points since 2009.
, Japan had 1,381 public quick-charge stations, the largest deployment of fast chargers in the world, but only around 300 slow chargers., China had around 800 public slow charging points, and no fast charging stations., the country with the highest ratio of quick chargers to electric vehicles was Japan, with a ratio of 0.030, and the Netherlands had the largest ratio of slow EVSE/EV, with more than 0.50, while the U.S had a slow EVSE/EV ratio of 0.20.
, the largest public charging networks in Australia exist in the capital cities of Perth and Melbourne, with around 30 stations established in both cities – smaller networks exist in other capital cities.
In April 2017, YPF, the state-owned oil company of Argentina, reported that it will install 220 fast-load stations for electric vehicles in 110 of its service stations in national territory.
As of August 2019, in the U.S., there are 2,140 CHAdeMO charge stations, 1,888 SAE CCS1 charge stations, and 678 Tesla super charger stations, according to the U.S. DoE's Alternative Fuels Data Center.

Locations

Charging stations can be found and will be needed where there is on-street parking, at taxi stands, in parking lots, as well as in the workplaces, in driveways and garages at home. Existing filling stations may also incorporate charging stations. The electrical facilities at RV parks are sometimes used for charging - especially in rural areas where normal EV charging facilities are not available. , charging stations have been criticized for being inaccessible, hard to find, out of order, and slow; thus reducing EV expansion. At the same time more gas stations add EV charging stations to meet the increasing demand among EV drivers. Worldwide, hotels are adopting a policy of providing their guests with electric car charging. Recent evidence using machine learning and artificial intelligence suggests that U.S. consumers may be equally satisfied with government-run versus privately run charging stations and that urban locations garner higher negative sentiment as compared to non-urban locations.

Vehicle and charging station projects and joint ventures

Electric car manufacturers, charging infrastructure providers, and regional governments have entered into many agreements and ventures to promote and provide electric vehicle networks of public charging stations.
The EV Plug Alliance is an association of 21 European manufacturers which proposes an alternative connecting solution. The project is to impose an IEC norm and to adopt a European standard for the connection solution with sockets and plugs for electric vehicle charging infrastructure. Members argue that the system is safer because they use shutters. General consensus is that the IEC 62196 and IEC 61851-1 already have taken care of safety by making parts non-live when touchable.

Battery swapping

A battery swapping station is a place at which a vehicle's discharged battery or battery pack can be immediately swapped for a fully charged one, eliminating the delay involved in waiting for the vehicle's battery to charge.
Battery swapping is common in warehouses using electric forklift trucks.

History

The concept of an exchangeable battery service was first proposed as early as 1896, in order to overcome the limited operating range of electric cars and trucks. It was first put into practice between 1910 and 1924, by Hartford Electric Light Company, through the GeVeCo battery service, and was initially available for electric trucks. The vehicle owner purchased the vehicle, without a battery, from General Vehicle Company, part-owned by General Electric, and the electricity was purchased from Hartford Electric through the use of an exchangeable battery. Both vehicles and batteries were modified to facilitate a fast battery exchange. The owner paid a variable per-mile charge and a monthly service fee to cover maintenance and storage of the truck. During the period of the service, the vehicles covered more than 6 million miles.
Beginning in 1917, a similar successful service was operated in Chicago for owners of Milburn Electric cars, who also could buy the vehicle without the batteries. A rapid battery replacement system was implemented to keep running 50 electric buses at the 2008 Summer Olympics.
In 1993, Jonathan Tennyson created Suntera, The Solar Electric Chariot Company. With the focus of reintroducing battery-swap stations to the world, Suntera developed a two-seat 3-wheel electric vehicle called the SUNRAY, which came with a battery cartridge that swapped out in minutes at a battery-swap station located along a highway or roadside. In 1995, Jonathan exhibited his SUNRAY and a 2-wheel battery-swap motor scooter designed by TUCKER car designer Budd Steinhilbur at the Geneva Motor Show. After Jonathan Tennyson died from cancer in 1997, his electric car and motor scooter company was renamed Personal Electric Transports. In 2001, P.E.T.’s C.E.O. Anthony Locricchio added Electric Vehicle artist & inventor Todd Bank to the team to prototype Todd’s EV’s and battery-swap stations under pilot-program funding from the Los Angeles Department of Water and Power. Along with Budd’s new electric bus, the P.E.T. team spent the next five years exhibiting their vehicles and battery-swap station designs and physical prototypes around the world. In 2004, Todd's Road Ski, a 3-wheel stand-up EV won 1st place at the 5-day long American Tour De Sol electric vehicle race. Due to lack of interest in BEV’s, and hydrogen-highway politics of the time, Personal Electric Transports closed their doors for business in 2006. Jonathan Tennyson's solar-electric car racer and SUNRAY EV were quickly inducted into the Petersen Automotive Museum in Los Angeles, along with a fuel-cell battery-swap LAND GLIDER EV designed by Todd Bank. P.E.T. battery-swap EV's can also be seen at the California Automotive Museum in Sacremento and the Electric Vehicle Museum in Kingman, Arizona.
In recent years, Better Place, Tesla, and Mitsubishi Heavy Industries have been involved with integrating battery switch technology with their electric vehicles to extend driving range. In a battery switch station, the driver does not need to get out of the car while the battery is swapped. Battery swap requires an electric car designed for the "easy swap" of batteries. However, electric vehicle manufacturers working on battery switch technology have not standardized on battery access, attachment, dimension, location, or type.
In 2013, Tesla announced a proprietary charging station service to support owners of Tesla vehicles. A network of Tesla Supercharger stations was supposed to support both battery pack swaps for the Model S, along with the more-widespread fast charging capability for both the Model S and the Tesla Roadster. However, Tesla has abandoned their battery swap initiatives in favor of rapidly expanding fast-charging stations. This decision has driven Tesla to be a market-leader in fast charging stations, amounting to 1,210 stations worldwide, as of April 2018 and 1,971 stations, as of July 2020.

Benefits

The following benefits are claimed for battery swapping:
The Better Place network was the first modern commercial deployment of the battery switching model. The Renault Fluence Z.E. was the first electric car enabled with switchable battery technology available for the Better Place network in operation in Israel and Denmark.
Better Place launched its first battery-swapping station in Israel, in Kiryat Ekron, near Rehovot in March 2011.
The battery exchange process took five minutes.
Better Place filed for bankruptcy in Israel in May 2013. Under Better Place's business model, the company owned the batteries, so the court liquidator had to decide what to do with customers who did not have ownership of the battery and risked being left with a useless car.
Tesla designed its Model S to allow fast battery swapping.
In June 2013, Tesla announced its goal of deploying a battery swapping station in each of its supercharging stations.
At a demonstration event in 2013, Tesla showed that a battery swap operation with the Model S took just over 90 seconds, about half the time it takes to refill a gasoline-powered car used for comparison purposes during the event.
The first stations were planned to be deployed along Interstate 5 in California because, according to Tesla, a large number of Model S sedans make the San Francisco-Los Angeles trip regularly. Those stations were to be followed by ones on the Washington, DC, to Boston corridor. Elon Musk said the service would be offered for the price of about of gasoline at the current local rate, around to at June 2013 prices. Owners could pick up their battery pack fully charged on the return trip, which was included in the swap fee. Tesla would also offer the option to keep the pack received on the swap and pay the price difference if the battery received was newer, or to receive the original pack back from Tesla for a transport fee. Pricing had not been determined.
In June 2015, Musk indicated that Tesla was likely to abandon its plans to build a network of swap stations. He told his company's shareholders that, despite inviting all Model S owners in the California area to try out the one existing facility, at Harris Ranch, only four or five people had done so. Consequently, it was unlikely that the concept was worth expanding.
Other battery swapping service providers include Gogoro, Delta Electronics, BattSwap, and Voltia. NIO has 131 swap stations in China.

Criticism

These battery swapping solution have been criticized for being proprietary. By creating a monopoly regarding the ownership of the batteries and the patent protected technologies the companies split up the market and decrease the chances of a wider usage of battery swapping.

Charging station manufacturers

The principal suppliers and manufacturers of charging stations offer a range of options from simple charging posts for roadside use, charging cabinets for covered parking places to fully automated charging stations integrated with power distribution equipment
An operator manages charging stations from one or more manufacturers.

Block heater power supplies

In colder areas such as Finland, some northern US states and Canada there already exists some infrastructure for public power outlets provided primarily for use by block heaters and set with circuit breakers that prevent large current draws for other uses. These can sometimes be used to recharge electric vehicles, albeit slowly. In public lots, some such outlets are turned on only when the temperature falls below −20 °C, further limiting their use.

Standards

Voltage and power

The US-based SAE International defines Level 1 charging as using a standard 120 volt AC house outlet to charge an electric vehicle. This will take a long time to fully charge the car but if only used to commute or travel short distances, a full charge is not needed or can be done overnight. Level 1 is not used in countries where houses typically have 200-240 V.
240 volt AC charging is known as Level 2 charging. In North and South America, 240 V is used for household appliances such as clothes driers but in many countries it is the default for most households. Level 2 chargers range from chargers installed in consumer garages, to relatively slow public chargers. They can charge an electric car battery in 4–10 hours. Level 2 chargers are often placed at destinations so that drivers can charge their car while at work or shopping. Level 2 charge points are standard in many countries outside of North and South America. In North and South America Level 2 home chargers are best for drivers who use their vehicles more often or require more flexibility.
"AC Level 3" charging was defined in early editions of SAE J1772 at up to 400 amps, but has been dropped. Edition 7 of J1772 states in Appendix M "AC Level 3 charging has never been implemented. The following is historical information for reference only." The term "Level 3" appears to have been adopted colloquially to mean DC "fast" charging, although "Level 3" was never defined to mean that in J1772. Table 17 in Appendix M of J1772 lists AC Level 2 and AC Level 3 from 208 to 240 VAC, and DC Charging with 208-600 V input and 0–1000 V DC output. A Level 3 charging station may cost $120,000.
DC charging generally supports charging up to 500 volts for passenger cars. Some newer high-end passenger car EVs and many heavy duty EV trucks and buses use DC charging with a nominal DC voltage of 700 V or higher, but below 1000 V peak. The organization CHAdeMO was the world's first standardized fast charging protocol with mass-produced EVs in the market. DC chargers in North America often use a 480 VAC input delivering 62.5 kW.
There are three connection cases:
There are four plug types:
For Combined Charging System DC charging which requires PLC, two extra connectors are added at the bottom of Type 1 or Type 2 vehicle inlets and charging plugs to connect high voltage DC charging stations to the battery of the vehicle. These are commonly known as Combo 1 or Combo 2 connectors. The choice of Combo 1 or Combo 2 style inlets is normally standardised on a per-country basis, so that public charging providers do not need to fit cables with both variants. Generally, North America uses Combo 1 style vehicle inlets, most of the rest of the world uses Combo 2 style vehicle inlets for CCS.
Reports emerged in late July 2013 of a significant conflict between the companies responsible for the two types of charging plugs. The Japanese-developed CHAdeMO standard is favored by Nissan, Mitsubishi, and Toyota, while the SAE J1772 Combo standard is backed by GM, Ford, Volkswagen, and BMW. Both are direct-current quick-charging systems designed to charge the battery of an electric vehicle to 80 percent in approximately 20 minutes, but the two systems are completely incompatible. In light of an ongoing feud between the two groups, experts in the field warned that the momentum of the electric vehicle market will be severely affected. Richard Martin, editorial director for clean technology marketing and consultant firm Navigant Research, stated:

Fast charging, however and whenever it gets built out, is going to be key for the development of a mainstream market for plug-in electric vehicles. The broader conflict between the CHAdeMO and SAE Combo connectors, we see that as a hindrance to the market over the next several years that needs to be worked out.

EV charging station signs

In the United States, the standard charging station sign is defined in the Federal Highway Administration's Manual on Uniform Traffic Control Devices 2009 edition.
In July 2013, FHWA released interim MUTCD approval for charging station signs located on public roads governed by MUTCD standards.
There is an open source, public domain European charge station sign proposed.

Related technologies

Smart grid communication

Recharging a large battery pack presents a high load on the electrical grid, but this can be scheduled for periods of reduced load or reduced electricity costs. In order to schedule the recharging, either the charging station or the vehicle can communicate with the smart grid. Some plug-in vehicles allow the vehicle operator to control recharging through a web interface or smartphone app. Furthermore, in a vehicle-to-grid scenario the vehicle battery can supply energy to the grid at periods of peak demand. This requires additional communication between the grid, charging station, and vehicle electronics. SAE International is developing a range of standards for energy transfer to and from the grid including SAE J2847/1 "Communication between Plug-in Vehicles and the Utility Grid". ISO and IEC are also developing a similar series of standards known as ISO/IEC 15118: "Road vehicles -- Vehicle to grid communication interface".

Renewable electricity and RE charging stations

Charging stations are usually connected to the electrical grid, which often means that their electricity originates from fossil-fuel power stations or nuclear power plants. Solar power is also suitable for electric vehicles. Nidec Industrial Solutions has designed a system that can be powered by either the grid or renewable energy sources like PV. SolarCity is marketing its solar energy systems along with electric car charging installations. The company has announced a partnership with Rabobank to make electric car charging available for free to owners of Tesla vehicles traveling on Highway 101 between San Francisco and Los Angeles. Other cars that can make use of same charging technology are welcome.
s at a charging station powered with solar panels in Frankfort, Illinois.

SPARC station

The SPARC uses a single custom fabricated monocrystalline solar panel capable of producing 2.7 kW of peak power to charge pure electric or plug-in hybrid to 80% capacity without drawing electricity from the local grid. Plans for the SPARC include a non-grid tied system as well as redundancy for tying to the grid through a renewable power plan.

E-Move charging station

The E-Move Charging Station is equipped with eight monocrystalline solar panels, which can supply 1.76 kWp of solar power. With further refinements, the designers are hoping to generate about 2000 kWh of electricity from the panels over the year.

Wind-powered charging station

In 2012, Urban Green Energy introduced the world's first wind-powered electric vehicle charging station, the Sanya SkyPump. The design features a 4 kW vertical-axis wind turbine paired with a GE WattStation.