Adenoviridae


Adenoviruses are medium-sized, nonenveloped viruses with an icosahedral nucleocapsid containing a double stranded DNA genome. Their name derives from their initial isolation from human adenoids in 1953.
They have a broad range of vertebrate hosts; in humans, more than 50 distinct adenoviral serotypes have been found to cause a wide range of illnesses, from mild respiratory infections in young children to life-threatening multi-organ disease in people with a weakened immune system.

Virology

Classification

This family contains the following genera:
Classification of Adenoviridae can be complex.
In humans, there are 57 accepted human adenovirus types in seven species :
Different types/serotypes are associated with different conditions:
When not restricting the subject to human viruses, Adenoviridae can be divided into five genera: Mastadenovirus, Aviadenovirus, Atadenovirus, Siadenovirus, and Ichtadenovirus.

Structure

Adenoviruses represent the largest known nonenveloped viruses. They are able to be transported through the endosome. The virion also has a unique "spike" or fiber associated with each penton base of the capsid that aids in attachment to the host cell via the receptor on the surface of the host cell.
In 2010, scientists announced that they had solved the structure of the human adenovirus at the atomic level, making the largest high-resolution model ever. The virus is composed of around 1 million amino acid residues and weighs around 150 MDa.

Genome

The adenovirus genome is linear, non-segmented double-stranded DNA that is between 26 and 48 Kbp. This allows the virus to theoretically carry 22 to 40 genes. Although this is significantly larger than other viruses in its Baltimore group, it is still a very simple virus and is heavily reliant on the host cell for survival and replication. An interesting feature of this viral genome is that it has a terminal 55 kDa protein associated with each of the 5' ends of the linear dsDNA. These are used as primers in viral replication and ensure that the ends of the virus' linear genome are adequately replicated.

Replication

Adenoviruses possess a linear dsDNA genome and are able to replicate in the nucleus of vertebrate cells using the host's replication machinery.
Entry of adenoviruses into the host cell involves two sets of interactions between the virus and the host cell. Most of the action occurs at the vertices. Entry into the host cell is initiated by the knob domain of the fiber protein binding to the cell receptor. The two currently established receptors are: CD46 for the group B human adenovirus serotypes and the coxsackievirus adenovirus receptor for all other serotypes. There are some reports suggesting MHC molecules and sialic acid residues functioning in this capacity as well. This is followed by a secondary interaction, where a motif in the penton base protein interacts with an integrin molecule. It is the co-receptor interaction that stimulates entry of the adenovirus. This co-receptor molecule is αv integrin. Binding to αv integrin results in endocytosis of the virus particle via clathrin-coated pits. Attachment to αv integrin stimulates cell signaling and thus induces actin polymerization resulting in entry of the virion into the host cell within an endosome.
Once the virus has successfully gained entry into the host cell, the endosome acidifies, which alters virus topology by causing capsid components to disband. The capsid is destabilized and protein VI is released from the capsid. These changes, as well as the toxic nature of the pentons, destroy the endosome, resulting in the movement of the virion into the cytoplasm. With the help of cellular microtubules, the virus is transported to the nuclear pore complex, whereby the adenovirus particle disassembles. Viral DNA is subsequently released, which can enter the nucleus via the nuclear pore. After this the DNA associates with histone molecules. Thus, viral gene expression can occur and new virus particles can be generated.
The adenovirus life cycle is separated by the DNA replication process into two phases: an early and a late phase. In both phases, a primary transcript that is alternatively spliced to generate monocistronic mRNAs compatible with the host's ribosome is generated, allowing for the products to be translated.
The early genes are responsible for expressing mainly non-structural, regulatory proteins. The goal of these proteins is threefold: to alter the expression of host proteins that are necessary for DNA synthesis; to activate other virus genes ; and to avoid premature death of the infected cell by the host-immune defenses.
Some adenoviruses under specialized conditions can transform cells using their early gene products. E1A has been found to immortalize primary cells in vitro allowing E1B to assist and stably transform the cells. Nevertheless, they are reliant upon each other to successfully transform the host cell and form tumors.
DNA replication separates the early and late phases. Once the early genes have liberated adequate virus proteins, replication machinery, and replication substrates, replication of the adenovirus genome can occur. A terminal protein that is covalently bound to the 5’ end of the adenovirus genome acts as a primer for replication. The viral DNA polymerase then uses a strand displacement mechanism, as opposed to the conventional Okazaki fragments used in mammalian DNA replication, to replicate the genome.
The late phase of the adenovirus lifecycle is focused on producing sufficient quantities of structural protein to pack all the genetic material produced by DNA replication. Once the viral components have successfully been replicated, the virus is assembled into its protein shells and released from the cell as a result of virally induced cell lysis.

Multiplicity reactivation

Adenovirus is capable of multiplicity reactivation . MR is the process by which two, or more, virus genomes containing lethal damage interact within the infected cell to form a viable virus genome. Such MR was demonstrated for adenovirus 12 after virions were irradiated with UV light and allowed to undergo multiple infection of host cells. In a review, numerous examples of MR in different viruses were described, and it was suggested that MR is a common form of sexual interaction that provides the survival advantage of recombinational repair of genome damages.

Epidemiology

Transmission

Adenoviruses are unusually stable to chemical or physical agents and adverse pH conditions, allowing for prolonged survival outside of the body and water. Adenoviruses are spread primarily via respiratory droplets, however they can also be spread by fecal routes. Research into the molecular mechanisms underlying adenoviral transmission provide empirical evidence in support of the hypothesis that cellular receptors for adenovirus and coxsackievirus are needed to transport adenoviruses into certain naive/progenitor cell types.

Humans

Humans infected with adenoviruses display a wide range of responses, from no symptoms at all to the severe infections typical of Adenovirus serotype 14.

Animals

is a novel species of the Mastadenovirus genus isolated from Myotis and Scotophilus kuhlii in China. It is most closely related to the tree shrew and canine AdVs.
Two types of canine adenoviruses are well known, type 1 and 2. Type 1 causes infectious canine hepatitis, a potentially fatal disease involving vasculitis and hepatitis. Type 1 infection can also cause respiratory and eye infections. CAdV-1 also affects foxes and may cause hepatitis and encephalitis. Canine adenovirus 2 is one of the potential causes of kennel cough. Core vaccines for dogs include attenuated live CAdV-2, which produces immunity to CAdV-1 and CAdV-2. CAdV-1 was initially used in a vaccine for dogs, but corneal edema was a common complication.
Squirrel adenovirus is reported to cause enteritis in red squirrels in Europe, while gray squirrels seem to be resistant. SqAdV is most closely related to the adenovirus of guinea pigs.
Adenovirus in reptiles is poorly understood, but research is currently in progress.
Adenoviruses are also known to cause respiratory infections in horses, cattle, pigs, sheep, and goats. Equine adenovirus 1 can also cause fatal disease in immunocompromised Arabian foals, involving pneumonia and destruction of pancreatic and salivary gland tissue. Tupaia adenovirus has been isolated from tree shrews.
Otarine adenovirus 1 has been isolated from sea lions.
The fowl adenoviruses are associated with many disease conditions in domestic fowl like Inclusion body hepatitis, Hydropericardium syndrome, Egg drop syndrome, Quail bronchitis, Gizzard erosions and many respiratory conditions. They have also been isolated from wild Black Kites.
Titi monkey adenovirus was isolated from a colony of monkeys.

Prevention

Currently, there is a vaccine for adenovirus type 4 and 7 for military personnel only. Military personnel are the recipients of this vaccine because they may be at a higher risk of infection. The vaccine contains a live virus, which may be shed in stool and lead to transmission. There is currently no adenovirus vaccine for the general public. The vaccine is not approved for use outside of the military, as it has not been tested in studied in the general population or on people with weakened immune systems.
In the past, US military recruits were vaccinated against two serotypes of adenovirus, with a corresponding decrease in illnesses caused by those serotypes. That vaccine is no longer manufactured. The U.S. Army Medical Research and Materiel Command announced on 31 October 2011 that a new adenovirus vaccine, which replaces the older version that has been out of production for over a decade, was shipped to basic training sites Oct. 18, 2011. More information is available here.
Prevention of adenovirus, as well as other respiratory illnesses, involves frequent hand washing for more than 20 seconds, avoiding touching the eyes, face, and nose with unwashed hands, and avoiding close contact with people with symptomatic adenovirus infection. Those with symptomatic adenovirus infection are additionally advised to cough or sneeze into the arm or elbow instead of the hand, to avoid sharing cups and eating utensils, and to refrain from kissing others. Chlorination of swimming pools can prevent outbreaks of conjunctivitis caused by adenovirus.

Diagnosis

Diagnosis is from symptoms and history. Tests are only necessary in very serious cases. Tests include blood tests, eyes, nose or throat swabs, stool sample tests, and chest x-rays. In the laboratory, adenovirus can be identified with antigen detection, polymerase chain reaction, virus isolation and serology. Even if adenovirus is found to be present, it may not be the cause of any symptoms. Some immunocompromised individuals can shed the virus for weeks and show no symptoms.

Infections

Most infections with adenovirus result in infections of the upper respiratory tract. Adenovirus infections often show up as conjunctivitis, tonsillitis, an ear infection, or croup. Adenoviruses, types 40 and 41 can also cause gastroenteritis. A combination of conjunctivitis and tonsillitis is particularly common with adenovirus infections. Some children can develop adenovirus bronchiolitis or pneumonia, both of which can be severe. In babies, adenoviruses can also cause coughing fits that look almost exactly like whooping cough. Adenoviruses can also cause viral meningitis or encephalitis. Rarely, adenovirus can cause hemorrhagic cystitis.
Most people recover from adenovirus infections by themselves, but people with immunodeficiency sometimes die of adenovirus infections, and—rarely—even previously healthy people can die of these infections. This may be because sometimes adenoviral infection can lead to cardiac disorders. For example, in one study, some cardiac samples of patients with dilated cardiomyopathy were positive for presence of adenovirus type 8.
Adenoviruses are often transmitted by expectorate, but can also be transmitted by contact with an infected person, or by virus particles left on objects such as towels and faucet handles. Some people with adenovirus gastroenteritis may shed the virus in their stools for months after getting over the symptoms. The virus can be passed through water in swimming pools that do not have enough chlorine in them. As with many other illnesses, good handwashing is one way to inhibit the spread of adenoviruses from one person to another. Heat and bleach will kill adenoviruses on objects.

Treatment

There are no proven antiviral drugs to treat adenoviral infections, so treatment is largely directed at the symptoms. The antiviral drug cidofovir has helped certain of those patients who had severe cases of illness; the number helped and to what degree, and the particular complications or symptoms it helped with, and when and where this happened, were not given in the source. A doctor may give antibiotic eyedrops for conjunctivitis, while awaiting results of bacterial cultures, and to help prevent secondary bacterial infections. Currently, there is no adenovirus vaccine available to the general public, but a vaccine is available for the United States military for Types 4 and 7.

Use in Gene Therapy and Vaccination

Gene Therapy

Adenoviruses have long been a popular viral vector for gene therapy due to their ability to affect both replicating and non-replicating cells, accommodate large transgenes, and code for proteins without integrating into the host cell genome. More specifically, they are used as a vehicle to administer targeted therapy, in the form of recombinant DNA or protein. This therapy has been found especially useful in treating monogenic disease and cancer. In China, oncolytic adenovirus is an approved cancer treatment. Specific modifications on fibre proteins are used to target Adenovirus to certain cell types; a major effort is made to limit hepatotoxicity and prevent multiple organ failure. Adenovirus dodecahedron can qualify as a potent delivery platform for foreign antigens to human myeloid dendritic cells, and that it is efficiently presented by MDC to M1-specific CD8+ T lymphocytes.
Adenovirus has been used for delivery of CRISPR/Cas9 gene editing systems, but high immune reactivity to viral infection has posed challenges in use for patients. Use of adeno-associated virus shows promise in overcoming immunogenicity, though it has a smaller payload capacity.

Vaccines

Modified adenovirus vectors, including replication incompetent types, can deliver DNA coding for specific antigens. Recombinant adenovirus type-5 and adenovirus type-26 are being used vectors in candidate COVID-19 vaccines. The goal is to express the spike glycoprotein of severe acute respiratory syndrome coronavirus 2. A replication-deficient chimpanzee adenovirus vaccine vector is being used in a trial of a COVID-19 vaccine. The vaccine is known as ChAdOx1 nCoV-19 or AZD1222 .