ALAS (missile)


ALAS is a Serbian long-range multipurpose wire guided missile system developed by the private company EdePro, which operates under the direction of the state-owned Yugoimport SDPR. The ALAS missile system was developed primarily for missions against tanks, armored vehicles, fortifications, command posts, low-flying helicopters, coastal ships, industrial facilities and bridges. It can be deployed by any suitable platform including helicopters, armored vehicles, small ships and infantry. The guidance system is based on video/infrared technology, with the missile connected to the launcher by a fiber-optic cable. The ALAS flies at low altitude and has small radar and infrared signatures due to using a turbofan motor instead of a turbojet. In recent years, the ALAS platform has found a secondary use as a UAV.

Description of system and role

The ALAS missile system is intended for two primary missions:
Another possible application of the ALAS missile system would be to defend an airfield and conduct surgical strikes until heavier forces are available. Its range could extend the close-combat kill zone to 5–25 km in front of the forward line of its own troops and for deeper strikes up to 60 km.
The operative flight envelope in the radial axis with respect to the axis of motion is ±3g, whereas in the axial direction it is 10g.

Tactical role

The ALAS missile system is intended to attack distant targets, such as:
The two main types of system depend on missiles used as ALAS or RALAS system.

ALAS

The ALAS missile is hot-launched from its canister by means of a solid-propellant boost motor. ALAS is the designation for missiles produced in ALAS-A, ALAS-B and ALAS-C variants.
vehicle chassis
For the United Arab Emirates it will be delivered on the Nimr 6x6 chassis. The ALAS-C abandoned the initial design and moved the arrow wing forward. It used a small degree of aerodynamic control via rudders and was propelled by an axial turbine engine equipped with a single nozzle. ALAS-C missiles installed the turbojet in the stretch LORANA of missile X-type wing control of the rudder, head mounted as a 45 ° cross. Located in the wing are the engine's two intake ports, the rear portion of the wing on both sides of the elastomer contains two, flat, engine nozzles and a fiber spool. Employing an INS or optionally a GPS guidance system, the ALAS-C will have a range of up to 25 km, using a video/ccs/iir system to deliver its fragmentation warhead.

ALAS-A

The missile is programmed to follow a preset course around or over any obstructing terrain using electronic terrain maps. the terminal guidance phase uses an infrared image making it possible to transfer thermal images back to the launching platform via a 200 MBit/s data link provided by an optical fibre. Thus, it is possible to manually select a target or abort the mission.
Missile communication is realized via optical monomode cable with two channels :
Firing station comprises a high-performance compact computer for missile guidance, an operator control panel and a high-resolution display. The system uses advanced control and image processing algorithms, electro-optical converters and radio links. The firing station has an optional GPS and north-seeking device. The firing station is used for mission planning before the engagement. The firing station stores a digitized map and displays the map during missile flight. For some applications, a dual monitor system used. The firing unit can be used as a trainer and simulator without additional hardware.
When attacking ships, missiles can fly at an altitude of a few meters above sea level. At this stage of the flight, the flight controls are made according to pre-programmed data. When the rocket reaches the target area, the gunner seizes control.

Propulsion

During launch, a solid propellant booster accelerates the missile to an initial cruising speed . Then the TMM-040 turbojet ignites to take the missile to the target under control of the guidance system and the operator. Main propulsion characteristics:
RALAS has solid propellant sustainer rocket engine, accelerated with solid propellant booster engine variant can replace the turbojet with range estimated to 9-10 km with greater speed. It was in early stages of development designated as LORANA. RALAS has a 10.5 kg tandem warhead capable to penetrate over 1,000 mm RHA, or a blast fragmentation one with a 25 meters lethal radius. RALAS is intended for use from land or helicopter platforms for launch. RALAS missile seeker was tested in mid 2012 on light aircraft SILA 450C domestic aircraft in a series of 10 flights above military multibranch exercise range "Pasuljanske livade" Serbia. RALAS is an advanced remote non-line of sight attack system battery that consists of a battery command post and four launch vehicles, with each vehicle equipped with 4 to 8 containers with missiles. A missile carrier is available for reloading missiles or as a backup control car.
RALAS missile consists of the following functional units/sub-systems:
The nose missile is mounted with a video unit that allows target detection the size of a tank at distances of 3 km. The field of view available on the display unit is 7 ° x 5 °. The fiber optic cable can handle pulling forces of 52 N. Loss of signal in an optical cable is 0.2 dB / km. The cable provides an on-board missile data transmission rate of 128 kbit/s and from the missile to ground control data transmission speed of 240 Mbi /s - available on one video channel and two data channels.
The firing station works similarly to ALAS. RALAS can achieve a maximum deviation of 1 m.

Operational use

Missile takes off from the shipping container-starter.
RALAS can be stored in a container more than 10 years without maintenance. After the installation on the carrier the rocket is ready for immediate use.

Launching platform

RALAS is currently integrated on two mobile platforms:
ALAS is currently integrated on:

Current operators

*