Word (computer architecture)
In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized piece of data handled as a unit by the instruction set or the hardware of the processor. The number of bits in a word is an important characteristic of any specific processor design or computer architecture.
The size of a word is reflected in many aspects of a computer's structure and operation; the majority of the registers in a processor are usually word sized and the largest piece of data that can be transferred to and from the working memory in a single operation is a word in many architectures. The largest possible address size, used to designate a location in memory, is typically a hardware word.
Several of the earliest computers used binary-coded decimal rather than plain binary, typically having a word size of 10 or 12 decimal digits, and some early decimal computers had no fixed word length at all. Early binary systems tended to use word lengths that were some multiple of 6-bits, with the 36-bit word being especially common on mainframe computers. The introduction of ASCII led to the move to systems with word lengths that were a multiple of 8-bits, with 16-bit machines being popular in the 1970s before the move to modern processors with 32 or 64 bits. Special-purpose designs like digital signal processors, may have any word length from 4 to 80 bits.
The size of a word can sometimes differ from the expected due to backward compatibility with earlier computers. If multiple compatible variations or a family of processors share a common architecture and instruction set but differ in their word sizes, their documentation and software may become notationally complex to accommodate the difference.
Uses of words
Depending on how a computer is organized, word-size units may be used for:;Fixed-point numbers: Holders for fixed point, usually integer, numerical values may be available in one or in several different sizes, but one of the sizes available will almost always be the word. The other sizes, if any, are likely to be multiples or fractions of the word size. The smaller sizes are normally used only for efficient use of memory; when loaded into the processor, their values usually go into a larger, word sized holder.
;Floating-point numbers: Holders for floating point numerical values are typically either a word or a multiple of a word.
;Addresses: Holders for memory addresses must be of a size capable of expressing the needed range of values but not be excessively large, so often the size used is the word though it can also be a multiple or fraction of the word size.
;Registers: Processor registers are designed with a size appropriate for the type of data they hold, e.g. integers, floating-point numbers, or addresses. Many computer architectures use general-purpose registers that are capable of storing data in multiple representations.
;Memory–processor transfer: When the processor reads from the memory subsystem into a register or writes a register's value to memory, the amount of data transferred is often a word. Historically, this amount of bits which could be transferred in one cycle was also called a catena in some environments. In simple memory subsystems, the word is transferred over the memory data bus, which typically has a width of a word or half-word. In memory subsystems that use caches, the word-sized transfer is the one between the processor and the first level of cache; at lower levels of the memory hierarchy larger transfers are normally used.
;Unit of address resolution: In a given architecture, successive address values designate successive units of memory; this unit is the unit of address resolution. In most computers, the unit is either a character or a word. If the unit is a word, then a larger amount of memory can be accessed using an address of a given size at the cost of added complexity to access individual characters. On the other hand, if the unit is a byte, then individual characters can be addressed.
;Instructions: Machine instructions are normally the size of the architecture's word, such as in RISC architectures, or a multiple of the "char" size that is a fraction of it. This is a natural choice since instructions and data usually share the same memory subsystem. In Harvard architectures the word sizes of instructions and data need not be related, as instructions and data are stored in different memories; for example, the processor in the 1ESS electronic telephone switch had 37-bit instructions and 23-bit data words.
Word size choice
When a computer architecture is designed, the choice of a word size is of substantial importance. There are design considerations which encourage particular bit-group sizes for particular uses, and these considerations point to different sizes for different uses. However, considerations of economy in design strongly push for one size, or a very few sizes related by multiples or fractions to a primary size. That preferred size becomes the word size of the architecture.Character size was in the past one of the influences on unit of address resolution and the choice of word size. Before the mid-1960s, characters were most often stored in six bits; this allowed no more than 64 characters, so the alphabet was limited to upper case. Since it is efficient in time and space to have the word size be a multiple of the character size, word sizes in this period were usually multiples of 6 bits. A common choice then was the 36-bit word, which is also a good size for the numeric properties of a floating point format.
After the introduction of the IBM System/360 design, which used eight-bit characters and supported lower-case letters, the standard size of a character became eight bits. Word sizes thereafter were naturally multiples of eight bits, with 16, 32, and 64 bits being commonly used.
Variable word architectures
Early machine designs included some that used what is often termed a variable word length. In this type of organization, a numeric operand had no fixed length but rather its end was detected when a character with a special marking, often called word mark, was encountered. Such machines often used binary-coded decimal for numbers. This class of machines included the IBM 702, IBM 705, IBM 7080, IBM 7010, UNIVAC 1050, IBM 1401, and IBM 1620.Most of these machines work on one unit of memory at a time and since each instruction or datum is several units long, each instruction takes several cycles just to access memory. These machines are often quite slow because of this. For example, instruction fetches on an IBM 1620 Model I take 8 cycles just to read the 12 digits of the instruction. Instruction execution took a completely variable number of cycles, depending on the size of the operands.
Word and byte addressing
The memory model of an architecture is strongly influenced by the word size. In particular, the resolution of a memory address, that is, the smallest unit that can be designated by an address, has often been chosen to be the word. In this approach, the word-addressable machine approach, address values which differ by one designate adjacent memory words. This is natural in machines which deal almost always in word units, and has the advantage of allowing instructions to use minimally sized fields to contain addresses, which can permit a smaller instruction size or a larger variety of instructions.When byte processing is to be a significant part of the workload, it is usually more advantageous to use the byte, rather than the word, as the unit of address resolution. Address values which differ by one designate adjacent bytes in memory. This allows an arbitrary character within a character string to be addressed straightforwardly. A word can still be addressed, but the address to be used requires a few more bits than the word-resolution alternative. The word size needs to be an integer multiple of the character size in this organization. This addressing approach was used in the IBM 360, and has been the most common approach in machines designed since then.
In a byte-oriented machine, moving a single byte from one arbitrary location to another is typically:
- LOAD the source byte
- STORE the result back in the target byte
- LOAD the word containing the source byte
- SHIFT the source word to align the desired byte to the correct position in the target word
- AND the source word with a mask to zero out all but the desired bits
- LOAD the word containing the target byte
- AND the target word with a mask to zero out the target byte
- OR the registers containing the source and target words to insert the source byte
- STORE the result back in the target location
Powers of two
Different amounts of memory are used to store data values with different degrees of precision. The commonly used sizes are usually a power of two multiple of the unit of address resolution. Converting the index of an item in an array into the address of the item then requires only a shift operation rather than a multiplication. In some cases this relationship can also avoid the use of division operations. As a result, most modern computer designs have word sizes that are a power of two times the size of a byte.Size families
As computer designs have grown more complex, the central importance of a single word size to an architecture has decreased. Although more capable hardware can use a wider variety of sizes of data, market forces exert pressure to maintain backward compatibility while extending processor capability. As a result, what might have been the central word size in a fresh design has to coexist as an alternative size to the original word size in a backward compatible design. The original word size remains available in future designs, forming the basis of a size family.In the mid-1970s, DEC designed the VAX to be a 32-bit successor of the 16-bit PDP-11. They used word for a 16-bit quantity, while longword referred to a 32-bit quantity. This was in contrast to earlier machines, where the natural unit of addressing memory would be called a word, while a quantity that is one half a word would be called a halfword. In fitting with this scheme, a VAX quadword is 64 bits. They continued this word/longword/quadword terminology with the 64-bit Alpha.
Another example is the x86 family, of which processors of three different word lengths have been released, while word continues to designate a 16-bit quantity. As software is routinely ported from one word-length to the next, some APIs and documentation define or refer to an older word-length than the full word length on the CPU that software may be compiled for. Also, similar to how bytes are used for small numbers in many programs, a shorter word may be used in contexts where the range of a wider word is not needed. For example, Microsoft's Windows API maintains the programming language definition of WORD as 16 bits, despite the fact that the API may be used on a 32- or 64-bit x86 processor, where the standard word size would be 32 or 64 bits, respectively. Data structures containing such different sized words refer to them as WORD, DWORD and QWORD respectively. A similar phenomenon has developed in Intel's x86 assembly language – because of the support for various sizes in the instruction set, some instruction mnemonics carry "d" or "q" identifiers denoting "double-", "quad-" or "double-quad-", which are in terms of the architecture's original 16-bit word size.
In general, new processors must use the same data word lengths and virtual address widths as an older processor to have binary compatibility with that older processor.
Often carefully written source code - written with source code compatibility and software portability in mind - can be recompiled to run on a variety of processors, even ones with different data word lengths or different address widths or both.