Washer (hardware)
A washer is a thin plate with a hole that is normally used to distribute the load of a threaded fastener, such as a bolt or nut. Other uses are as a spacer, spring, wear pad, preload indicating device, locking device, and to reduce vibration. Washers often have an outer diameter about twice their inner diameter, but this can vary quite widely.
Washers are usually metal or plastic. High-quality bolted joints require hardened steel washers to prevent the loss of pre-load due to brinelling after the torque is applied. Washers are also important for preventing galvanic corrosion, particularly by insulating steel screws from aluminium surfaces. They may also be used in rotating applications, as a bearing. A thrust washer is used when a rolling element bearing is not needed either from a cost-performance perspective or due to space restraints. Coatings can be used in attempt to reduce wear and friction either by hardening their surface, or providing a solid lubricant.
The origin of the word is unknown; the first recorded use of the word was in 1346, however, the first time its definition was recorded was in 1611.
Rubber or fiber gaskets used in taps as seal against water leaks are sometimes referred to colloquially as washers; but, while they may look similar, washers and gaskets are usually designed for different functions and made differently.
Type and form
Washers can be categorised into three types;- Plain washers, which spread a load, and prevent damage to the surface being fixed, or provide some sort of insulation such as electrical
- Spring washers, which have axial flexibility and are used to prevent fastening or loosening due to vibrations
- Locking washers, which prevent fastening or loosening by preventing unscrewing rotation of the fastening device; locking washers are usually also spring washers.
"Type" is not to be confused with "form". The British Standard for Metric Series Metal Washers, written in 1968, coined the term "form". The forms go from A to G and dictate the outside diameter and thickness of the flat washers.
- Form A: Normal diameter, normal thickness
- Form B: Normal diameter, light thickness
- Form C: Large diameter, normal thickness
- Form D: Large diameter, light thickness
- Form E: Larger diameter, normal thickness
- Form F: Larger again diameter, normal thickness
- Form G: Largest diameter, larger thickness.
Plain washers
Spring and locking washers
Name | Image | Description |
Belleville washer, also known as a cupped spring washer or a conical washer | A washer with a slight conical shape, which provides an axial force when deformed. The surface may be serrated, which will have improved locking capabilities. | |
Curved disc spring | Similar to a Belleville, except the washer is curved in only one direction, therefore there are only four points of contact. Unlike Belleville washers, they exert only light pressures. | |
Wave washers | A washer with a "wave" in the axial direction, which provides spring pressure when compressed. Wave washers, of comparable size, do not produce as much force as Belleville washers. In Germany, they are sometimes used as lock washers, however they are less effective than other choices. | |
Split washer or spring lock washer | A ring split at one point and bent into a helical shape. This causes the washer to exert a spring force between the fastener's head and the substrate, which maintains the washer hard against the substrate and the bolt thread hard against the nut or substrate thread, creating more friction and resistance to rotation. Applicable standards are ASME B18.21.1, DIN B, and United States Military Standard NASM 35338. Spring washers are a left hand helix and allow the thread to be tightened in a right hand direction only, i.e. a clockwise direction. When a left hand turning motion is applied, the raised edge bites into the underside of the bolt or nut and the part that it is bolted to, thus resisting turning. Therefore, spring washers are ineffective on left hand threads and hardened surfaces. Also, they are not to be used in conjunction with a flat washer under the spring washer, as this isolates the spring washer from biting into the component that will resist turning. The use and effectiveness of spring lock washers has been in debate of late, with some publications advising against their use on the grounds that, when tight, the washer is flat against the substrate and gives no more resistance to rotation than a normal washer at the same torque. NASA researchers have gone as far as to say "In summary, a lockwasher of this type is useless for locking." However, a spring washer will continue to hold the bolt against the substrate and maintain friction when loosened slightly, whereas a plain washer will not. The benefit of spring lock washers lies in the trapezoidal shape of the washer. When compressed to loads near the proof strength of the bolt, it will twist and flatten. This reduces the spring rate of the bolted joint which allows it to maintain more force under the same vibration levels. This prevents loosening. | |
Toothed lock washer, serrated washer or star washer | A washer with serrations that extend radially inward or outward to bite into the bearing surface. This type of washer is especially effective as a lock washer when used with a soft substrate, such as aluminium or plastic, and can resist rotation more than a plain washer on hard surfaces, as the tension between washer and the surface is applied over a much smaller area. There are four types: internal, external, combination, and countersunk. The internal style has the serrations along the inner edge of the washer, which makes them more aesthetically pleasing. The external style has the serrations around the outer edge, which provides better holding power, because of the greater circumference. The combination style has serrations about both edges, for maximum holding power. The countersunk style is designed to be used with flat-head screws. Tooth lockwashers are also used for ground bonding where a metal lug or object must be electrically bonded to a surface. The teeth of the washer cut through surface oxides, paints or other finishes and provide a gas-tight conductive path. In these applications, the washer is not placed under the head of the screw, it is placed between the surfaces to be bonded. In such applications, the tooth washer does not provide any anti-rotation locking features. | |
Tab washer | A locking washer that works by having a side tab that can be bent into place against a nut. Metallic or non-metallic, the tab washer notch prevents rotation relative to the shaft or fastener. Variations include single, multiple, formed and flat. | |
Wedge lock washer | A two-piece washer with radial teeth on one side and wedging action of the halves where they join. While generally more expensive per piece, these washers provide the highest amount of vibrational loosening prevention. |
Lock washers, locknuts, jam nuts, and thread-locking fluid are ways to prevent vibration from loosening a bolted joint.
Gaskets
The term washer is often applied to various gasket types such as those used to seal the control valve in taps. Crush washers are made of a soft metal such as aluminium or copper, and are used to seal fluid or gas connections such as those found in an internal combustion engine.Name | Image | Description |
Shoulder washer | A plain washer type with integral cylindrical sleeve; they are used to keep separate different metal types, and as seals. This term is also used for electrically insulating grommets. |
Specialised types
Materials
Washers can be fabricated from a variety of materials including, but not limited to:- Steel – Carbon steel, spring steel, A2 stainless steel, and A4 stainless steel
- Non-ferrous metal – Copper, brass, aluminium, titanium, iron, bronze, and zinc
- Alloy – Silicon bronze, Inconel, Monel, and Hastelloy
- Plastic – Thermoplastics and thermosetting polymers such as polyethylene, PTFE
- Nylon – Nylon 6, Nylon 66, Nylatron, and Tecamid MDS
- Specialty – Fibers, ceramics, rubber, felt, leather, bimetals, and mica
- Phenolic – The material has good electrical insulation, is lightweight, tough, has low moisture absorption, is heat resistant, and is resistant to chemicals and corrosion. Phenolic washers are substitutes for flat metallic washers in cases where electrical insulation is required. Phenolic washers are stamped out of large sheets of the phenolic material. The term “phenolic washer” is sometimes used for stamped washers from laminated materials such as paper, canvas, and Mylar.
Corrosion resistance
- Metallic coatings – Typical coatings used to produce corrosion resistant washers are zinc, cadmium, and nickel. Zinc coating acts as a sacrificial surface layer that falls victim to corrosive materials before the washer's material can be harmed. Cadmium produces a high-quality protective surface but is toxic, both biologically and environmentally. Nickel coatings add protection from corrosion only when the finish is dense and non-porous.
- Electroplating – This method involves coating the washer by electrolytic deposition using metals such as chromium or silver.
- Phosphating – A resilient, but abrasive surface is achieved by incorporating a zinc-phosphate layer and corrosion-protective oil.
- Browning or bluing – Exposing the washer to a chemical compound or alkali salt solution causes an oxidizing chemical reaction, which results in the creation of a corrosion-resistant, colored surface. The integrity of the coating can be improved by treating the finished product with a water-displacing oil.
- Chemical plating – This technique utilizes a nickel-phosphor alloy that is precipitated onto the washer surface, creating an extremely corrosion- and abrasive-resistant surface.
Standard metric flat washers sizes