WIMP (computing)


In human–computer interaction, WIMP stands for "windows, icons, menus, pointer", denoting a style of interaction using these elements of the user interface. Other expansions are sometimes used, such as substituting "mouse" and "mice" for menus, or "pull-down menu" and "pointing" for pointer.
Though the acronym has fallen into disuse, it has often been likened to the term graphical user interface . Any interface that uses graphics can be called a GUI, and WIMP systems derive from such systems. However, while all WIMP systems use graphics as a key element, and therefore are GUIs, the reverse is not true. Some GUIs are not based in windows, icons, menus, and pointers. For example, most mobile phones represent actions as icons and menus, but do not often don't rely on a conventional pointer or containerized windows to host program interactions.
WIMP interaction was developed at Xerox PARC and popularized with Apple's introduction of the Macintosh in 1984, which added the concepts of the "menu bar" and extended window management.
The WIMP interface has the following components:
This style of system improves human–computer interaction by emulating real-world interactions and providing better ease of use for non-technical people. Because programs contained by a WIMP interface subsequently rely on the same core input methods, the interactions throughout the system are standardized. This consistency allows users' skills carry from one application to another.

Criticism

Some human–computer interaction researchers consider WIMP to be ill-suited for multiple applications, especially those requiring precise human input or more than three dimensions of input. Drawing and writing are example of these limitations; a traditional pointer is limited by two dimensions, and consequently doesn't account for the pressure applied when using a physical writing utility. Pressure sensitive graphics tablets are often used to overcome this limitation.
Another issue with WIMP-style user interfaces is that many implementations put users with disabilities at a disadvantage. For example, visually impaired users may have difficulty using applications when alternative text-based interfaces are not made available. People with motor impairments, such as Parkinson's disease, may not be able to navigate devices precisely using the traditional mouse pointer for input. To overcome these barriers, researchers continue to explore modern computer systems more accessible. Recent developments in artificial intelligence, specifically machine learning, have opened new doors for accessibility in technology, or assistive technology.

Moving past the WIMP interface

Multiple studies have explored the possibilities of moving past the WIMP interface, such as using reality-based interaction, making the interface "three-dimensional" by adding visual depth through the use of monocular cues, and even combining depth with physics. The latter resulted in the development of BumpTop desktop and its acquisition and release by Google.

External Links