In the human genome, WDR90 spans from base pairs 649363 to 667833, and has an mRNA sequence that is 5,250 nucleotides in length. This gene consists of 41 exons and encodes for a 1,750 amino acid protein in humans.
Locus
This human gene is located in the positive DNA strand on chromosome 16 at the position 16p13.3. Flanking sequences on the positive strand include FAM195A and RHOT2.
Aliases
Aliases for WDR90 include: C16orf15, C16orf16, C16orf17, C16orf18, C16orf19, and KIAA1924.
Homology
Paralogs
One human paralog for WDR90 has been found. This paralog is known as WDR16. According to UniProtKB/Swiss-Prot, WDR16 may play an essential role in growth or survival of hepatocellular carcinoma. This protein in humans if 620 amino acids long.
Orthologs
Orthologs for protein WDR90 are found conserved all the way back to single invertebrates. There were three conserved domains across mammals, DUF667, and two WD40 repeats.
Protein
Primary sequence
Human protein WDR90 is 287.7 kDa, with an isoelectric point of 6.584. There is a domain of unknown function called DUF667 that is conserved across its 30 predicted isoforms.
Post-translational modifications
WDR90 is predicted to be a heavily phosphorylated protein.
Domains and motifs
There are three domains that repeat throughout the human sequence.
Secondary Structure
The de novo protein structure of WDR90 in humans is predicted to possess beta sheets, beta turns, and random coils.
The human protein WDR90 adopts a 7-bladed beta propeller that is indicative of the WD40 repeat family. This structure was predicted with 100% confidence by the structure predicting program Phyre2.
Interacting Proteins
The most notable proteins that interact with human WDR90 are predicted to be UTY, KDM6B, SETD1B, and ASH2L. These proteins are primarily found as histone modifiers.
Transcription Factors
The promoter for WDR90 in humans has been predicted to have domains for the transcription factors: ARNT, AP-1, MYB, and Cis2His2.
Expression
Expression levels of human WDR90 appear to be relatively constituent in low levels, with its highest levels in the lymph nodes and thymus. The expression of WDR90 in development is the highest in blastocyst and fetal stages. Expression is notably absent from the neonatal and infant stages, then comes back during juvenile and persists through adulthood.
Bayne, Rosemary AL, et al. "Molecular Profiling of the Human Testis Reveals Stringent Pathway‐Specific Regulation of RNA Expression Following Gonadotropin Suppression and Progestogen Treatment." Journal of andrology29.4 : 389-403.
Huang, Chi-Cheng, et al. "Concurrent gene signatures for han chinesebreast cancers." PLoS ONE 8.10 : e76421.
Jakobsen, Lis, et al. "Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods." The EMBO Journal 30.8 : 1520-1535.
Lauwerys, Bernard, et al. "Method for the determination and the classification of rheumatic conditions." U.S. Patent Application 12/528,615.
Rink, Lori, et al. "Gene expression signatures and response to imatinib mesylate in gastrointestinal stromal tumor." Molecular Cancer Therapeutics 8.8 : 2172-2182.
Yanagisawa, Haru-aki, et al. "Station, Texas 77843, USA. Abbreviations: DMT, doublet microtubule; IJ, inner junction."