Volumetric heat capacity
The volumetric heat capacity of a material is the heat capacity of a sample of the substance divided by the volume of the sample. Informally, it is the amount of energy that must be added, in the form of heat, to one unit of volume of the material in order to cause an increase of one unit in its temperature. The SI unit of volumetric heat capacity is joule per kelvin per cubic meter, J/K/m3 or J/.
The volumetric heat capacity can also be expressed as the specific heat capacity times the density of the substance.
This quantity may be convenient for materials that are commonly measured by volume rather than mass, as is often the case in engineering and other technical disciplines. The volumetric heat capacity often varies with temperature, and is different for each state of matter. While the substance is undergoing a phase transition, such as melting or boiling, its volumetric heat capacity is technically infinite, because the heat goes into changing its state rather than raising its temperature.
The volumetric heat capacity of a substance, especially a gas, may be significantly higher when it is allowed to expand as it is heated than when is heated in a closed vessel that prevents expansion.
If the amount of substance is taken to be the number of moles in the sample, one gets the molar heat capacity.
Definition
The volumetric heat capacity is defined aswhere is the volume of the sample at temperature, and is the amount of heat energy needed to raise the temperature of the sample from to. This parameter is an intensive property of the substance.
Since both the heat capacity of an object and its volume may vary with temperature, in unrelated ways, the volumetric heat capacity is usually a function of temperature too. It is equal to the specific heat of the substance times its density , both measured at the temperature. Its SI unit is joule per kelvin per cubic meter.
This quantity is used almost exclusively for liquids and solids, since for gases it may be confused with the "specific heat capacity at constant volume", which generally has very different values. International standards now recommend that "specific heat capacity" always refer to capacity per unit of mass. Therefore, the word "volumetric" should always be used for this quantity.
History
and Petit predicted in 1818 that the product of solid substance density and specific heat capacity would be constant for all solids. This amounted to a prediction that volumetric heat capacity in solids would be constant. In 1819 they found that volumetric heat capacities were not quite constant, but that the most constant quantity was the heat capacity of solids adjusted by the presumed weight of the atoms of the substance, as defined by Dalton. This quantity was proportional to the heat capacity per atomic weight, which suggested that it is the heat capacity per atom which is closest to being a constant in solids.Eventually it became clear that heat capacities per particle for all substances in all states are the same, to within a factor of two, so long as temperatures are not in the cryogenic range.
Typical values
The volumetric heat capacity of solid materials at room temperatures and above varies widely, from about 1.2MJ/K/m3 to 3.4MJ/K/m3. This is mostly due to differences in the physical size of atoms. Atoms vary greatly in density, with the heaviest often being more dense, and thus are closer to taking up the same average volume in solids than their mass alone would predict. If all atoms were the same size, molar and volumetric heat capacity would be proportional and differ by only a single constant reflecting ratios of the atomic-molar-volume of materials. An additional factor for all types of specific heat capacities then further reflects degrees of freedom available to the atoms composing the substance, at various temperatures.For most liquids, the volumetric heat capacity is narrower, for example octane at 1.64MJ/K m3 or ethanol at 1.9. This reflects the modest loss of degrees of freedom for particles in liquids as compared with solids.
However, water has a very high volumetric heat capacity, at 4.18MJ/K m3, and ammonia is also fairly high.
For gases at room temperature, the range of volumetric heat capacities per atom only varies between different gases by a small factor less than two, because every ideal gas has the same molar volume. Thus, each gas molecule occupies the same mean volume in all ideal gases, regardless of the type of gas. This fact gives each gas molecule the same effective "volume" in all ideal gases. Thus, in the limit of ideal gas behavior this property reduces differences in gas volumetric heat capacity to simple differences in the heat capacities of individual molecules. As noted, these differ by a factor depending on the degrees of freedom available to particles within the molecules.
Volumetric heat capacity of gases
Large complex gas molecules may have high heat capacities per mole of gas molecules, but their heat capacities per mole of total gas atoms are very similar to those of liquids and solids, again differing by less than a factor of two per mole of atoms. This factor of two represents vibrational degrees of freedom available in solids vs. gas molecules of various complexities.In monatomic gases at room temperature and constant volume, volumetric heat capacities are all very close to 0.5kJ/K/m3, which is the same as the theoretical value of RT per kelvin per mole of gas molecules. As noted, the much lower values for gas heat capacity in terms of volume as compared with solids results mostly from the fact that gases under standard conditions consist of mostly empty space, which is not filled by the atomic volumes of the atoms in the gas. Since the molar volume of gases is very roughly 1000 times that of solids and liquids, this results in a factor of about 1000 loss in volumetric heat capacity for gases, as compared with liquids and solids. Monatomic gas heat capacities per atom are decreased by a factor of 2 with regard to solids, due to loss of half of the potential degrees of freedom per atom for storing energy in a monatomic gas, as compared with regard to an ideal solid. There is some difference in the heat capacity of monatomic vs. polyatomic gasses, and also gas heat capacity is temperature-dependent in many ranges for polyatomic gases; these factors act to modestly increase heat capacity per atom in polyatomic gases, as compared with monatomic gases. Volumetric heat capacities in polyatomic gases vary widely, however, since they are dependent largely on the number of atoms per molecule in the gas, which in turn determines the total number of atoms per volume in the gas.
The volumetric heat capacity is defined as having SI units of J/. It can also be described in Imperial units of BTU/.
Volumetric heat capacity of solids
Since the bulk density of a solid chemical element is strongly related to its molar mass, there exists noticeable inverse correlation between a solid's density and its specific heat capacity on a per-mass basis. This is due to a very approximate tendency of atoms of most elements to be about the same size, despite much wider variations in density and atomic weight. These two factors result in a good correlation between the volume of any given solid chemical element and its total heat capacity. Another way of stating this, is that the volume-specific heat capacity of solid elements is roughly a constant. The molar volume of solid elements is very roughly constant, and so also is the molar heat capacity for most solid substances. These two factors determine the volumetric heat capacity, which as a bulk property may be striking in consistency. For example, the element uranium is a metal which has a density almost 36 times that of the metal lithium, but uranium's volumetric heat capacity is only about 20% larger than lithium's.Since the volume-specific corollary of the Dulong-Petit specific heat capacity relationship requires that atoms of all elements take up the same volume in solids, there are many departures from it, with most of these due to variations in atomic size. For instance, arsenic, which is only 14.5% less dense than antimony, has nearly 59% more specific heat capacity on a mass basis. In other words; even though an ingot of arsenic is only about 17% larger than an antimony one of the same mass, it absorbs about 59% more heat for a given temperature rise. The heat capacity ratios of the two substances closely follows the ratios of their molar volumes ; the departure from the correlation to simple volumes in this case is due to lighter arsenic atoms being significantly more closely packed than antimony atoms, instead of similar size. In other words, similar-sized atoms would cause a mole of arsenic to be 63% larger than a mole of antimony, with a correspondingly lower density, allowing its volume to more closely mirror its heat capacity behavior.
Thermal inertia
Thermal inertia is a term commonly used for modelling heat transfers. It is a bulk material property related to thermal conductivity and volumetric heat capacity. For example, "this material has a high thermal inertia", or "thermal inertia plays an important role in this system", mean that dynamic effects are prevalent in a model, so that a steady-state calculation will yield inaccurate results.The term is a scientific analogy, and is not directly related to the mass-and-velocity term used in mechanics, where inertia is that which limits the acceleration of an object. In a similar way, thermal inertia is a measure of the thermal mass and the velocity of the thermal wave which controls the surface temperature of a material. In heat transfer, a higher value of the volumetric heat capacity means a longer time for the system to reach equilibrium.
The thermal inertia of a material is defined as the square root of the product of the material's bulk thermal conductivity and volumetric heat capacity, where the latter is the product of density and specific heat capacity:
- is thermal conductivity, with unit W·m−1·K−1
- is density, with unit kg·m−3
- is specific heat capacity, with unit J·kg−1·K−1
- has SI units of thermal inertia of J·m−2·K−1·s−. Non-SI units of kieffers: Cal·cm−2·K−1·s−, or 1000·Cal·cm−2·K−1·s−, are also used informally in older references.
Thermal inertia of the oceans is a major factor influencing climate commitment, the degree of global warming predicted to eventually result from a step change in climate forcing, such as a fixed increase in the atmospheric concentration of a greenhouse gas.