Volkswagen air-cooled engine


The Volkswagen air-cooled engine is an air-cooled boxer engine with four horizontally opposed cast-iron cylinders, cast aluminum alloy cylinder heads and pistons, magnesium-alloy crankcase, and forged steel crankshaft and connecting rods.
Variations of the engine were produced by Volkswagen plants worldwide from 1936 until 2006 for use in Volkswagen's own vehicles, notably the Type 1, Type 2, Type 3, and Type 4. Additionally, the engines were widely used in industrial, light aircraft and kit car applications.

Type 1: 1.0–1.6 litres

Like the Volkswagen Beetle produced after the war, the first Volkswagen Transporters used the Volkswagen air-cooled engine, a 1.1 litre, DIN-rated 18 kW, air-cooled four-cylinder "boxer" engine mounted in the rear. The 22-kilowatt version became standard in 1955, while an unusual early version of the engine which developed 25 kilowatts debuted exclusively on the Volkswagen Type 2 in 1959. Any examples that retain that early engine today are true survivors – since the 1959 engine was totally discontinued at the outset, no parts were ever made available.
The second-generation Transporter, the Volkswagen Type 2 employed a slightly larger version of the engine with 1.6 litres and.
A "T2b" Type 2 was introduced by way of gradual change over three years. The 1971 Type 2 featured a new, 1.6-litre engine, now with dual intake ports on each cylinder head, and was DIN-rated at.
The Volkswagen Type 3 was initially equipped with a 1.5-litre engine, displacing, based on the air-cooled flat-4 found in the Type 1. While the long block remained the same as the Type 1, the engine cooling was redesigned reducing the height of the engine profile, allowing greater cargo volume, and earning the nicknames of "Pancake" or "Suitcase" engine. This engine's displacement would later increase to 1.6 litres.
Originally a single- or dual-carburetor 1.5-litre engine, the Type 3 engine received a larger displacement and modified in 1968 to include Bosch D-Jetronic electronic fuel injection as an option, making it the first mass-production consumer cars with such a feature.

1000

The 1.2-litre engine is called Typ 122 and has a displacement of. As industrial engine, its rated power is at 3000 min−1 without a governor, the highest torque at 2000 min−1. With a governor set to 8% accuracy, the rated power is at 3000 min−1, the highest torque is at 2000 min−1. For other applications, the power and torque output may vary, e.g. On the Beetle produced at 3900 rpm and of torque at 2400 rpm.

1300

1285cc
Single port 1965–1970
Twin port 1971–1975. This engine was an improved version of the early design and had dual oil pressure-relief valves and a stronger crankshaft with a longer 69 mm stroke. Bore diameter was the same as the 1200 at 77 mm. New cylinder heads were employed with new intake manifold geometry.

1500

1493cc Single port only. Similar to the 1300 except the bore was increased to 83 mm. The cylinder head was modified slightly with a larger opening in order to accommodate the larger cylinder diameter.
The 1.6 l engine is called Typ 126. It has a displacement of 1584 cm3.
Was based on the 1500 with the cylinder bore increased to 85.5 mm. The stroke remained unchanged at 69 mm.
;Single port
The 1600 single port was used on the following models:
;Twin port
The 1600 dual port was used on the following models:
In 1968, Volkswagen introduced a new vehicle, the Volkswagen Type 4. The model 411, and later the model 412, offered many new features to the Volkswagen lineup. The Type 4 came out with a new larger, heavier, stronger and more powerful engine based on the same design as previous aircooled engines but was physically larger in size and external dimensions. It was called the 1700 and had a 90 mm bore with a 66 mm stroke. Most parts are not interchangeable with earlier engines.
While the VW 412 was discontinued in 1974 when sales dropped, its engine continued as the VW Bus power plant for Volkswagen Type 2s produced from 1972 to 1979: it continued in modified form in the later Vanagon which was air-cooled from 1980 until mid-1983.
1.7 Litre –
The Type 4 engine was also used on the Volkswagen version of the Porsche 914. Volkswagen versions originally came with an fuel-injected 1.7-litre flat-4 engine based on the Volkswagen air-cooled engine. In Europe, the four-cylinder cars were sold as Volkswagen-Porsches, at Volkswagen dealerships; while, in North America all 914's were marketed as Porsches. Porsche referred to their version of the Type 4 engine using the litre designation and not cc's. One visual difference is that all Porsche Type 4 engines have the oil dip-stick and oil fill mounted on top of the engine.
2.0 Litre –
Porsche discontinued the 914/6 variant in 1972 after production of 3,351 units; its place in the lineup was filled by a variant powered by a new // 2.0-litre fuel-injected version of Volkswagen's Type 4 engine in 1973. This engine used a longer 71 mm stroke crankshaft, new rod bearings and new pistons to increase the cylinder bore to 94 mm. This revision was designed by Porsche and later also used in the VW Type 2. Porsche 914 production ended in 1976. The 2.0-litre engine continued to be used in the Porsche 912E, which provided an entry-level model until the Porsche 924 was introduced in 1977.
1.8 Litre –
For 1974, the 914's 1.7-litre engine was replaced by a 1.8-litre, and the new Bosch L-Jetronic fuel injection system was added to American units to help with emissions control. A cylinder bore increase to 93 mm was made to the otherwise unchanged 1.7 litre engine block.
For the Volkswagen Type 2, 1972's most prominent change was a bigger engine compartment to fit the larger 1.7- to 2.0-litre engines from the Volkswagen Type 4, and a redesigned rear end which eliminated the removable rear apron. The air inlets were also enlarged to accommodate the increased cooling air needs of the larger engines.
This all-new, larger engine is commonly called the Type 4 engine as opposed to the previous Type 1 engine first introduced in the Type 1 Beetle. This engine was called "Type 4" because it was originally designed for the Type 4 automobiles. There is no "Type 2 engine", because those vehicles did not feature new engine designs when introduced. They used the "Type 1" engine from the Beetle with minor modifications such as rear mount provisions and different cooling shroud arrangements,
In the Type 2, the Volkswagen Type 4 engine was an option from 1972. This engine was standard in models destined for the US and Canada. Only with the Type 4 engine did an automatic transmission become available for the first time in 1973. Both engines displaced 1.7 litres, rated at with the manual transmission, and with the automatic. The Type 4 engine was enlarged to 1.8 litres and in 1974, and again to 2.0 litres and in 1976. As with all Transporter engines, the focus in development was not on power, but on low-end torque. The Type 4 engines were considerably more robust and durable than the Type 1 engines, particularly in Transporter service.
The engine that superseded the Type 4 engine in the late 1983 VW Bus retained Volkswagen Type 1 architecture, yet featured water-cooled cylinder heads and cylinder jackets. The wasserboxer, Volkswagen terminology for a water-cooled, opposed-cylinder was subsequently discontinued in 1992 with the introduction of the Eurovan.

Other applications

Beginning in 1987, Dunn-Right Incorporated of Anderson, South Carolina has made a kit to perform the conversion of a VW engine to a compressor.

Industrial

has officially offered these air-cooled boxer engines for use in industrial applications since 1950, lately under its Volkswagen Industrial Motor brand. Available in,,,, and outputs, from displacements of to, these Industrial air-cooled engines were officially discontinued in 1991.

Aircraft

The air-cooled opposed four-cylinder Beetle engines have been used for other purposes as well. Limbach Flugmotoren has since 1970 produced more than 6000 certified aircraft engines based on the Beetle engine. Sauer has since 1987 produced certified engines for small airplanes and motorgliders, and is now also producing engines for the ultralight community in Europe.
Especially interesting is its use as an experimental aircraft engine. This type of VW engine deployment started separately in Europe and in the US. In Europe this started in France straight after the Second World War using the engine in the Volkswagen Kübelwagen that were abandoned by the thousands in the country side and peaked with the JPX engine. In the US this started in the 1960s when VW Beetle started to show up there. A number of companies still produce aero engines that are Volkswagen Beetle engine derivatives: Limbach, Sauer, Hapi, Revmaster, Great Plains Type 1 Front Drive, Hummel, the AeroConversions AeroVee Engine, and others. Kit planes or plans built experimental aircraft were specifically designed to utilize these engines. The VW air-cooled engine does not require an expensive and often complex gear reduction unit to utilize a propeller at efficient cruise RPM. With its relative low cost and parts availability, many experimental aircraft are designed around the VW engines.
Formula V Air Racing uses aircraft designed to get maximum performance out of a VW powered aircraft resulting in race speeds above 160 mph.
Some aircraft that use the VW engine are:

Half VW

For aircraft use a number of experimenters seeking a small two-cylinder four-stroke engine began cutting Type 1 VW engine blocks in half, creating a two-cylinder, horizontally opposed engine. The resulting engine produces. Plans and kits have been made available for these conversions.
One such conversion is the Carr Twin, designed by Dave Carr, introduced in January 1975, in the Experimental Aircraft Association's Sport Aviation magazine. The design won the John Livingston Award for its outstanding contribution to low cost flying and also was awarded the Stan Dzik Memorial Award for outstanding design.
Other examples include the Total Engine Concepts MM CB-40 and Better Half VW.
Some aircraft that use the Half VW engine are: