Unary coding


Unary coding, or the unary numeral system and also sometimes called thermometer code, is an entropy encoding that represents a natural number, n, with n ones followed by a zero or with n − 1 ones followed by a zero. For example 5 is represented as 111110 or 11110. Some representations use n or n − 1 zeros followed by a one. The ones and zeros are interchangeable without loss of generality. Unary coding is both a prefix-free code and a self-synchronizing code.
n n Unary codeAlternative
0101
121001
23110001
3411100001
451111000001
56111110000001
6711111100000001
781111111000000001
89111111110000000001
91011111111100000000001

Unary coding is an optimally efficient encoding for the following discrete probability distribution
for.
In symbol-by-symbol coding, it is optimal for any geometric distribution
for which k ≥ φ = 1.61803398879…, the golden ratio, or, more generally, for any discrete distribution for which
for. Although it is the optimal symbol-by-symbol coding for such probability distributions, Golomb coding achieves better compression capability for the geometric distribution because it does not consider input symbols independently, but rather implicitly groups the inputs. For the same reason, arithmetic encoding performs better for general probability distributions, as in the last case above.

Unary code in use today

Examples of unary code uses include:
Unary coding is used in the neural circuits responsible for birdsong production. The nucleus in the brain of the songbirds that plays a part in both the learning and the production of bird song is the HVC. The command signals for different notes in the birdsong emanate from different points in the HVC. This coding works as space coding which is an efficient strategy for biological circuits due to its inherent simplicity and robustness.

Generalized unary coding

A generalized version of unary coding was presented by Subhash Kak to represent numbers much more efficiently than standard unary coding. Here's an example of generalized unary coding for integers from 1 through 15 that requires only 7 bits. Note that the representation is cyclic where one uses markers to represent higher integers in higher cycles.
nUnary codeGeneralized unary
000000000
1100000111
21100001110
311100011100
4111100111000
51111101110000
611111100010111
7111111100101110
81111111101011100
911111111100111001
10111111111101110010
111111111111100100111
1211111111111101001110
13111111111111100011101
141111111111111100111010
1511111111111111101110100

Generalized unary coding requires that the range of numbers to be represented to be pre-specified because this range determines the number of bits that are needed.