Ultraparallel theorem


In hyperbolic geometry, two lines may intersect, be ultraparallel, or be limiting parallel.
In conformal models of the hyperbolic plane, such as the Poincaré models, right angles may be recognized between intersecting lines. In such models, the ultraparallel theorem states that every pair of ultraparallel lines has a unique common perpendicular hyperbolic line.

Hilbert's construction

Let r and s be two ultraparallel lines.
From any two distinct points A and C on s draw AB and CB' perpendicular to r with B and B' on r.
If it happens that AB = CB', then the desired common perpendicular joins the midpoints of AC and BB'.
If not, we may suppose AB < CB' without loss of generality. Let E be a point on the line s on the opposite side of A from C. Take A' on CB' so that A'B' = AB. Through A' draw a line s' on the side closer to E, so that the angle B'A'E' is the same as angle BAE. Then s' meets s in an ordinary point D'. Construct a point D on ray AE so that AD = A'D'.
Then D' ≠ D. They are the same distance from r and both lie on s. So the perpendicular bisector of D'D is also perpendicular to r.

Proof in the Poincaré half-plane model

Let
be four distinct points on the abscissa of the Cartesian plane. Let and be semicircles above the abscissa with diameters and respectively. Then in the Poincaré half-plane model HP, and represent ultraparallel lines.
Compose the following two hyperbolic motions:
Then
Now continue with these two hyperbolic motions:
Then stays at,,, . The unique semicircle, with center at the origin, perpendicular to the one on must have a radius tangent to the radius of the other. The right triangle formed by the abscissa and the perpendicular radii has hypotenuse of length. Since is the radius of the semicircle on, the common perpendicular sought has radius-square
The four hyperbolic motions that produced above can each be inverted and applied in reverse order to the semicircle centered at the origin and of radius to yield the unique hyperbolic line perpendicular to both ultraparallels and.

Proof in the Beltrami-Klein model

In the Beltrami-Klein model of the hyperbolic geometry:
If one of the chords happens to be a diameter, we do not have a pole, but in this case any chord perpendicular to the diameter it is also perpendicular in the Beltrami-Klein model, and so we draw a line through the pole of the other line intersecting the diameter at right angles to get the common perpendicular.
The proof is completed by showing this construction is always possible:
Alternatively, we can construct the common perpendicular of the ultraparallel lines as follows: the ultraparallel lines in Beltrami-Klein model are two non-intersecting chords. But they actually intersect outside the circle. The polar of the intersecting point is the desired common perpendicular.