Timeline of volcanism on Earth
This timeline of volcanism on Earth is a list of major volcanic eruptions of approximately at least magnitude 6 on the Volcanic Explosivity Index or equivalent sulfur dioxide emission around the Quaternary period.
Some eruptions cooled the global climate—inducing a volcanic winter—depending on the amount of sulfur dioxide emitted and the magnitude of the eruption. Before the present Holocene epoch, the criteria are less strict because of scarce data availability, partly since later eruptions have destroyed the evidence. Only some eruptions before the Neogene period are listed. Known large eruptions after the Paleogene period are listed, especially those relating to the Yellowstone hotspot, the Santorini caldera, and the Taupo Volcanic Zone.
Active volcanoes such as Stromboli, Mount Etna and Kīlauea do not appear on this list, but some back-arc basin volcanoes that generated calderas do appear. Some dangerous volcanoes in "populated areas" appear many times: Santorini six times, and Yellowstone hotspot 21 times. The Bismarck volcanic arc, New Britain, and the Taupo Volcanic Zone, New Zealand, appear often too.
In addition to the events listed below, there are many examples of eruptions in the Holocene on the Kamchatka Peninsula, which are described in a supplemental table by Peter Ward.
Large Quaternary eruptions
The Holocene epoch begins 11,700 years BP.1000-2000 AD
- Pinatubo, island of Luzon, Philippines; 1991, June 15; VEI 6; of tephra; an estimated of were emitted
- Novarupta, Alaska Peninsula; 1912, June 6; VEI 6; of lava
- Santa Maria, Guatemala; 1902, October 24; VEI 6; of tephra
- Krakatoa, Indonesia; 1883, August 26–27; VEI 6; of tephra
- Mount Tambora, Lesser Sunda Islands, Indonesia; 1815, Apr 10; VEI 7; of tephra; an estimated of were emitted, produced the "Year Without a Summer"
- 1808 mystery eruption, VEI 6–7; discovered from ice cores in the 1980s.
- Grímsvötn, Northeastern Iceland; 1783–1785; Laki; 1783–1784; VEI 6; of lava, an estimated of were emitted, produced a Volcanic winter, 1783, on the North Hemisphere.
- Long Island, Northeast of New Guinea; 1660 ±20; VEI 6; of tephra
- Kolumbo, Santorini, Greece; 1650, September 27; VEI 5; of tephra
- Huaynaputina, Peru; 1600, February 19; VEI 6; of tephra
- Billy Mitchell, Bougainville Island, Papua New Guinea; 1580 ±20; VEI 6; of tephra
- Bárðarbunga, Northeastern Iceland; 1477; VEI 6; of tephra
- 1465 mystery eruption "the location of this eruption is uncertain, as it has only been identified from distant ice core records and atmospheric events around the time of King Alfonso II of Naples's wedding; it is believed to have been VEI 7 and possibly even larger than Mount Tambora's in 1815.
- 1452–53 New Hebrides arc, Vanuatu; the location of this eruption in the South Pacific is uncertain, as it has been identified from distant ice core records; the only pyroclastic flows are found at Kuwae; of tephra; of sulfuric acid
- 1280 in Quilotoa, Ecuador; VEI 6; of tephra
- 1257 Samalas eruption, Rinjani volcanic complex, Lombok Island, Indonesia; 40 km3 of tephra, Arctic and Antarctic Ice cores provide compelling evidence to link the ice core sulfate spike of 1258/1259 A.D. to this volcano.
Overview of Common Era
Caldera/ Eruption name | Volcanic arc/ belt or Subregion or Hotspot | VEI | Date | Known/proposed consequences |
Mount Pinatubo | Luzon Volcanic Arc | 6 | 1991, Jun 15 | Global temperature fell by 0.4 °C |
Novarupta | Aleutian Range | 6 | 1912, Jun 6 | |
Santa María | Central America Volcanic Arc | 6 | 1902, Oct 24 | |
Krakatoa | Sunda Arc | 6 | 1883, Aug 26–27 | At least 30,000 dead |
Mount Tambora | Lesser Sunda Islands | 7 | 1815, Apr 10 | Year Without a Summer |
1808 mystery eruption | Southwestern Pacific Ocean | 6 | 1808, Dec | A sulfate spike in ice cores |
Grímsvötn and Laki | Iceland | 6 | 1783–85 | Mist Hardships, French Revolution |
Long Island | Bismarck Volcanic Arc | 6 | 1660 | |
Huaynaputina | Andes, Central Volcanic Zone | 6 | 1600, Feb 19 | Russian famine of 1601–1603 |
Billy Mitchell | Bougainville & Solomon Is. | 6 | 1580 | |
Bárðarbunga | Iceland | 6 | 1477 | |
10 October 1465 mystery eruption | unknown | 7 | 1465 | Possibly larger than Mount Tambora's |
Kuwae | New Hebrides Arc | 6 | 1452–53 | 2nd pulse of Little Ice Age? |
Quilotoa | Andes, Northern Volcanic Zone | 6 | 1280 | |
Samalas | Lombok, Lesser Sunda Islands | 7 | 1257 | 1257 Samalas eruption, 1st pulse of Little Ice Age? |
Baekdu Mountain/Tianchi eruption | China/ North Korea border | 7 | 946, Nov-947 | Limited regional climatic effects. |
Katla/Eldgjá eruption | Iceland | 6 | 934–940 | |
Ceboruco | Trans-Mexican Volcanic Belt | 6 | 930 | |
Dakataua | Bismarck Volcanic Arc | 6 | 800 | |
Pago | Bismarck Volcanic Arc | 6 | 710 | |
Mount Churchill | eastern Alaska, USA | 6 | 700 | |
Rabaul Caldera | Bismarck Volcanic Arc | 6 | 540 | Extreme weather events of 535–536 |
Ilopango | Central America Volcanic Arc | 6 | 450 | |
Ksudach | Kamchatka Peninsula | 6 | 240 | |
Taupo Caldera/Hatepe eruption | Taupo Volcano | 7 | 180 or 230 | Affected skies over Rome and China |
Mount Vesuvius/Pompeii eruption | Italy | 5 | 79 | Destruction of Pompeii and Herculaneum |
Mount Churchill | eastern Alaska, USA | 6 | 60 | |
Ambrym | New Hebrides Arc | 6 | 50 | |
Apoyeque | Central America Volcanic Arc | 6 | 50 BC |
Note:
Caldera names tend to change over time. For example, Okataina Caldera, Haroharo Caldera, Haroharo volcanic complex, Tarawera volcanic complex had the same magma source in the Taupo Volcanic Zone. Yellowstone Caldera, Henry's Fork Caldera, Island Park Caldera, Heise Volcanic Field had all Yellowstone hotspot as magma source.
Earlier Quaternary eruptions
2.588 ± 0.005 million years BP, the Quaternary period and Pleistocene epoch begin.- Eifel hotspot, Laacher See, Vulkan Eifel, Germany; 12.9 ka; VEI 6; of tephra.
- Emmons Lake Caldera, Aleutian Range, 17 ka ±5; more than of tephra.
- Lake Barrine, Atherton Tableland, North Queensland, Australia; was formed over 17 ka.
- Menengai, East African Rift, Kenya; 29 ka
- Morne Diablotins, Commonwealth of Dominica; VEI 6; 30 ka.
- Kurile Lake, Kamchatka Peninsula, Russia; Golygin eruption; about 41.5 ka; VEI 7
- Maninjau Caldera, West Sumatra; VEI 7; around 52 ka; of tephra.
- Lake Toba, Sumatra, Indonesia; VEI 8; 73 ka ±4; of tephra; probably six gigatons of sulfur dioxide were emitted.
- Atitlán Caldera, Guatemalan Highlands; Los Chocoyos eruption; formed in an eruption 84 ka; VEI 7; of tephra.
- Mount Aso, island of Kyūshū, Japan; 90 ka; last eruption was more than of tephra.
- Sierra la Primavera volcanic complex, Guadalajara, Jalisco, Mexico; 95 ka; of Tala Tuff.
- Mount Aso, island of Kyūshū, Japan; 120 ka; of tephra.
- Mount Aso, island of Kyūshū, Japan; 140 ka; of tephra.
- Puy de Sancy, Massif Central, central France; it is part of an ancient stratovolcano which has been inactive for about 220,000 years.
- Emmons Lake Caldera, Aleutian Range, 233 ka; more than of tephra.
- Mount Aso, island of Kyūshū, Japan; caldera formed as a result of four huge caldera eruptions; 270 ka; of tephra.
- Uzon-Geyzernaya calderas, Kamchatka Peninsula, Russia; 325–175 ka of ignimbrite deposits.
- Diamante Caldera–Maipo volcano complex, Argentina-Chile; 450 ka; of tephra.
- Yellowstone hotspot; Yellowstone Caldera ; 640 ka; VEI 8; more than of tephra
- Three Sisters, USA; Tumalo volcanic center; with eruptions from 600–700 to 170 ka years ago
- Uinkaret volcanic field, Arizona, USA; the Colorado River was dammed by lava flows multiple times from 725 to 100 ka.
- Mono County, California, USA; Long Valley Caldera; 758.9 ka ±1.8; VEI 7; of Bishop Tuff.
- Valles Caldera, New Mexico, USA; around 1.15 Ma; VEI 7; around of the Tshirege formation, Upper Bandelier eruption.
- Sutter Buttes, Central Valley of California, USA; were formed over 1.5 Ma by a now-extinct volcano.
- Ebisutoge-Fukuda tephras, Japan; 1.75 Ma; of tephra.
- Yellowstone hotspot; Island Park Caldera ; 2.1 Ma; VEI 8; of Huckleberry Ridge Tuff.
- Cerro Galán, Catamarca Province, northwestern Argentina; 2.2 Ma; VEI 8; of Cerro Galán Ignimbrite.
Large Neogene eruptions
Pliocene eruptions
Approximately 5.332 million years BP, the Pliocene epoch begins. Most eruptions before the Quaternary period have an unknown VEI.- Boring Lava Field, Boring, Oregon, USA; the zone became active at least 2.7 Ma, and has been extinct for about 300,000 years.
- Norfolk Island, Australia; remnant of a basaltic volcano active around 2.3 to 3 Ma.
- Pastos Grandes Caldera, Altiplano-Puna volcanic complex, Bolivia; 2.9 Ma; VEI 7; more than of Pastos Grandes Ignimbrite.
- Little Barrier Island, northeastern coast of New Zealand's North Island; it erupted from 1 million to 3 Ma.
- Mount Kenya; a stratovolcano created approximately 3 Ma after the opening of the East African rift.
- Pacana Caldera, Altiplano-Puna Volcanic Complex, northern Chile; 4 Ma; VEI 8; of Atana Ignimbrite.
- Frailes Plateau, Bolivia; 4 Ma; of Frailes Ignimbrite E.
- Cerro Galán, Catamarca Province, northwestern Argentina; 4.2 Ma; of Real Grande and Cueva Negra tephra.
- Yellowstone hotspot, Heise volcanic field, Idaho; Kilgore Caldera ; VEI 8; of Kilgore Tuff; 4.45 Ma ±0.05.
- Khari Khari Caldera, Frailes Plateau, Bolivia; 5 Ma; of tephra.
Miocene eruptions
- Cerro Guacha, Bolivia; 5.6–5.8 Ma.
- Lord Howe Island, Australia; Mount Lidgbird and Mount Gower are both made of basalt rock, remnants of lava flows that once filled a large volcanic caldera 6.4 Ma.
- Yellowstone hotspot, Heise volcanic field, Idaho; 5.51 Ma ±0.13.
- Yellowstone hotspot, Heise volcanic field, Idaho; 5.6 Ma; of Blue Creek Tuff.
- Cerro Panizos, Altiplano-Puna Volcanic Complex, Bolivia; 6.1 Ma; of Panizos Ignimbrite.
- Yellowstone hotspot, Heise volcanic field, Idaho; 6.27 Ma ±0.04.
- Yellowstone hotspot, Heise volcanic field, Idaho; Blacktail Caldera, Idaho; 6.62 Ma ±0.03; of Blacktail Tuff.
- Pastos Grandes Caldera, Altiplano-Puna Volcanic Complex, Bolivia; 8.3 Ma; of Sifon Ignimbrite.
- Manus Island, Admiralty Islands, northern Papua New Guinea; 8–10 Ma
- Banks Peninsula, New Zealand; Akaroa erupted 9 Ma, Lyttelton erupted 12 Ma.
- Mascarene Islands were formed in a series of undersea volcanic eruptions 8–10 Ma, as the African plate drifted over the Réunion hotspot.
- Yellowstone hotspot, Twin Fall volcanic field, Idaho; 8.6 to 10 Ma.
- Yellowstone hotspot, Picabo volcanic field, Idaho; 10.21 Ma ± 0.03.
- Mount Cargill, New Zealand; the last eruptive phase ended some 10 Ma. The center of the caldera is about Port Chalmers, the main port of the city of Dunedin.
- Yellowstone hotspot, Idaho; Bruneau-Jarbidge volcanic field; 10.0 to 12.5 Ma.
- Anahim hotspot, British Columbia, Canada; has generated the Anahim Volcanic Belt over the last 13 million years.
- Yellowstone hotspot, Owyhee-Humboldt volcanic field, Nevada/ Oregon; around 12.8 to 13.9 Ma.
- Tejeda Caldera, Gran Canaria, Spain; 13.9 Ma; the 80 km3 eruption produced a composite ignimbrite of rhyolite, trachyte and basaltic materials, with a thickness of 30 metres at 10 km from the caldera center
- Gran Canaria shield basalt eruption, Spain; 14.5 to 14 Ma; 1,000 km3 of tholeiitic to alkali basalts
- Campi Flegrei, Naples, Italy; 14.9 Ma; of Neapolitan Yellow Tuff.
- Huaylillas Ignimbrite, Bolivia, southern Peru, northern Chile; 15 Ma ±1; of tephra.
- Yellowstone hotspot, McDermitt volcanic field, Trout Creek Mountains, Whitehorse Caldera, Oregon; 15 Ma; of Whitehorse Creek Tuff.
- Yellowstone hotspot, Lake Owyhee volcanic field; 15.0 to 15.5 Ma.
- Yellowstone hotspot, McDermitt volcanic field, Jordan Meadow Caldera,, Nevada/ Oregon; 15.6 Ma; Longridge Tuff member 2-3.
- Yellowstone hotspot, McDermitt volcanic field, Longridge Caldera,, Nevada/ Oregon; 15.6 Ma; Longridge Tuff member 5.
- Yellowstone hotspot, McDermitt volcanic field, Calavera Caldera,, Nevada/ Oregon; 15.7 Ma; of Double H Tuff.
- Yellowstone hotspot, McDermitt volcanic field, Hoppin Peaks Caldera, 16 Ma; Hoppin Peaks Tuff.
- Yellowstone hotspot, McDermitt volcanic field, Trout Creek Mountains, Pueblo Caldera, Oregon; 15.8 Ma; of Trout Creek Mountains Tuff.
- Yellowstone hotspot, McDermitt volcanic field, Washburn Caldera,, Nevada/ Oregon; 16.548 Ma; of Oregon Canyon Tuff.
- Yellowstone hotspot, Northwest Nevada volcanic field, Virgin Valley, High Rock, Hog Ranch, and unnamed calderas; West of Pine Forest Range, Nevada; 15.5 to 16.5 Ma.
- Yellowstone hotspot, Steens and Columbia River flood basalts, Pueblo, Steens, and Malheur Gorge-region, Pueblo Mountains, Steens Mountain, Washington, Oregon, and Idaho, USA; most vigorous eruptions were from 14–17 Ma; of lava.
- Mount Lindesay, Australia; is part of the remnants of the Nandewar extinct volcano that ceased activity about 17 Ma after 4 million years of activity.
- Oxaya Ignimbrites, northern Chile ; 19 Ma; of tephra.
- Pemberton Volcanic Belt was erupting about 21 to 22 Ma.
Volcanism before the Neogene
- Paleogene ends 23 million years ago.
- *The formation of the Chilcotin Group basalts occurs between 10–6 million years ago.
- *The formation of the Columbia River Basalt Group occurs between 17 and 6 million years ago.
- *La Garita Caldera erupts in the Wheeler Geologic Area, Central Colorado volcanic field, Colorado, USA, eruption several VEI8 events, of Fish Canyon Tuff was blasted out in a major single eruption about 27.8 million years ago.
- *Unknown source in Ethiopia erupts 29 million years ago with at least of Green Tuff and SAM.
- *Sam Ignimbrite in Yemen forms 29.5 million years ago, at least of distal tuffs associated with the ignimbrites.
- *Jabal Kura’a Ignimbrite in Yemen forms 29.6million years ago, at least of distal tuffs associated with the ignimbrites.
- *The Ethiopian Highlands flood basalt begins 30 million years ago
- About 33.9 million ago, the Oligocene epoch of the Paleogene period begins
- *The Mid-Tertiary ignimbrite flare-up begins 40 million years ago and last till 25 million years ago.
- *Bennett Lake Volcanic Complex erupts 50 million years ago with a VEI7 of tephra.
- *Canary hotspot is believed to have first appeared about 60 million years ago.
- *Formation of the Brito-Arctic province begins 61 million years ago.
- Approximately million years ago, the Cretaceous–Paleogene extinction event occurred
- *Réunion hotspot, Deccan Traps, India, formed between 60 and 68 million years ago which are thought to have played a role in the K-Pg extinction.
- *The Louisville hotspot has produced the Louisville Ridge, it is active for at least 80 million years. It may have originated the Ontong Java Plateau around 120 million years ago.
- *Hawaii hotspot, Meiji Seamount is the oldest extant seamount in the Hawaiian-Emperor seamount chain, with an estimated age of 82 million years.
- *The Kerguelen Plateau begins forming 110 million years ago.
- *The Rahjamal Traps form from 117–116 million years ago.
- *The Ontong Java Plateau forms from 125–120 million years ago
- *Paraná and Etendeka traps, Brazil, Namibia and Angola form 128 to 138 million years ago. 132 million years ago, a possible supervolcanic eruption occurred, ejecting.
- *Formation of the Karoo-Ferrar flood basalts begins 183 million years ago.
- The flood basalts of the Central Atlantic magmatic province are thought to have contributed to the Triassic–Jurassic extinction event about 199 million years ago.
- The Siberian Traps are thought to have played a significant role in the Permian–Triassic extinction event 252 million years ago.
- *Formation of the Emeishan Traps began 260 million years ago.
- The Late Devonian extinction occurs about 374 million years ago.
- The Ordovician–Silurian extinction event occurs between 450 and 440 million years ago.
- *Glen Coe, Scotland; VEI8; 420 million years ago
- *Scafells, Lake District, England; VEI8; Ordovician.
- The Phanerozoic eon begins 542 million years ago
- *Midcontinent Rift System of North America begins forming 1,000 million years ago.
- *Mackenzie Large Igneous Province forms 1,270 million years ago.
- *Mistassini dike swarm and Matachewan dike swarm form 2,500 million years ago.
- *Blake River Megacaldera Complex forms 2,704–2,707 million years ago.
- Approximately 2,500 million years ago, the Proterozoic eon of the Precambrian period begins
- About 3,800 million years ago, the Archean eon of the Precambrian period begins
Volcanic Explosivity Index (VEI)
VEI | Tephra Volume | Example |
0 | Effusive | Masaya Volcano, Nicaragua, 1570 |
1 | >0.00001 | Poás Volcano, Costa Rica, 1991 |
2 | >0.001 | Mount Ruapehu, New Zealand, 1971 |
3 | >0.01 | Nevado del Ruiz, Colombia, 1985 |
4 | >0.1 | Eyjafjallajökull, Iceland, 2010 |
5 | >1 | Mount St. Helens, United States, 1980 |
6 | >10 | Mount Pinatubo, Philippines, 1991 |
7 | >100 | Mount Tambora, Indonesia, 1815 |
8 | >1000 | Yellowstone Caldera, United States, Pleistocene |
Volcanic dimming
The global dimming through volcanism is quite independent of the eruption VEI. When sulfur dioxide reacts with water vapor, it creates sulfate ions, which are very reflective; ash aerosol on the other hand absorbs Ultraviolet. Global cooling through volcanism is the sum of the influence of the global dimming and the influence of the high albedo of the deposited ash layer. The lower snow line and its higher albedo might prolong this cooling period. Bipolar comparison showed six sulfate events: Tambora, Cosigüina, Krakatoa, Agung, and El Chichón, and the 1808 mystery eruption. And the atmospheric transmission of direct solar radiation data from the Mauna Loa Observatory, Hawaii detected only five eruptions:- June 11, 2009, Sarychev Peak, Kuril Islands, 400 tons of tephra, VEI 4
- *
- June 12–15, 1991, Mount Pinatubo, Philippines, 11,000 ±0.5 tons of tephra, VEI 6
- *Global cooling: 0.5 °C,
- March 28, 1982, El Chichón, Mexico, 2,300 tons of tephra, VEI 5
- *
- October 10, 1974, Volcán de Fuego, Guatemala, 400 tons of tephra, VEI 4
- *
- February 18, 1963, Mount Agung, Lesser Sunda Islands, 100 tons of lava, more than 1,000 tons of tephra, VEI 5
- *Northern Hemisphere cooling: 0.3 °C,
But very large sulfur dioxide emissions overdrive the oxidizing capacity of the atmosphere. Carbon monoxide's and methane's concentration goes up, global temperature goes up, ocean's temperature goes up, and ocean's carbon dioxide solubility goes down.