Thermal management of high-power LEDs


s can use 350 milliwatts or more in a single LED. Most of the electricity in an LED becomes heat rather than light. If this heat is not removed, the LEDs run at high temperatures, which not only lowers their efficiency, but also makes the LED less reliable. Thus, thermal management of high power LEDs is a crucial area of research and development. It is necessary to limit both the junction and the phosphor particles temperatures to a value that will guarantee the desired LED lifetime.

Heat transfer procedure

In order to maintain a low junction temperature to keep good performance of an LED, every method of removing heat from LEDs should be considered. Conduction, convection, and radiation are the three means of heat transfer. Typically, LEDs are encapsulated in a transparent polyurethane-based resin, which is a poor thermal conductor. Nearly all heat produced is conducted through the back side of the chip. Heat is generated from the p–n junction by electrical energy that was not converted to useful light, and conducted to outside ambience through a long path, from junction to solder point, solder point to board, and board to the heat sink and then to the atmosphere. A typical LED side view and its thermal model are shown in the figures.
The junction temperature will be lower if the thermal impedance is smaller and likewise, with a lower ambient temperature. To maximize the useful ambient temperature range for a given power dissipation, the total thermal resistance from junction to ambient must be minimized.
The values for the thermal resistance vary widely depending on the material or component supplier. For example, RJC will range from 2.6 °C/W to 18 °C/W, depending on the LED manufacturer. The thermal interface material’s thermal resistance will also vary depending on the type of material selected. Common TIMs are epoxy, thermal grease, pressure-sensitive adhesive and solder. Power LEDs are often mounted on metal-core printed circuit boards, which will be attached to a heat sink. Heat conducted through the MCPCB and heat sink is dissipated by convection and radiation. In the package design, the surface flatness and quality of each component, applied mounting pressure, contact area, the type of interface material and its thickness are all important parameters to thermal resistance design.

Passive thermal designs

Some considerations for passive thermal designs to ensure good thermal management for high power LED operation include:

Adhesive

is commonly used to bond LED and board, and board and heat sinks. Using a thermal conductive adhesive can further optimize the thermal performance.

Heat sink

s provide a path for heat from the LED source to outside medium. Heat sinks can dissipate power in three ways: conduction, convection, or radiation.
Although a bigger surface area leads to better cooling performance, there must be sufficient space between the fins to generate a considerable temperature difference between the fin and the surrounding air.
When the fins stand too close together, the air in between can become almost the same temperature as the fins, so that thermal transmission will not occur. Therefore, more fins do not necessarily lead to better cooling performance.
For heat transfer between LED sources over 15 Watt and LED coolers, it is recommended to use a high thermal conductive interface material which will create a thermal resistance over the interface lower than 0.2K/W
Currently, the most common solution is to use a phase-change material, which is applied in the form of a solid pad at room temperature, but then changes to a thick, gelatinous fluid once it rises above 45 °C.

Heat pipes and vapor chambers

s and vapor chambers are passive, and have effective thermal conductivities ranging from 10,000 to 100,000 W/m K. They can provide the following benefits in LED thermal management:
The LED filament style of lamp combines many relatively low-power LEDs on a transparent glass substrate, coated with phosphor, and then encapsulated in silicone. The lamp bulb is filled with inert gas, which convects heat away from the extended array of LEDs to the envelope of the bulb. This design avoids the requirement for a large heat sink.

Active thermal designs

Some works about using active thermal designs to realize good thermal management for high power LED operation include:

Thermoelectric (TE) device

Thermoelectric devices are a promising candidate for thermal management of high power LED owing to the small size and fast response. A TE device made by two ceramic plates can be integrated into a high power LED and adjust the temperature of LED by heat-conducting and electrical current insulation. Since ceramic TE devices tend to have a coefficient of thermal expansion mismatch with the silicon substrate of LED, silicon-based TE devices have been invented to substitute traditional ceramic TE devices. Silicon owning higher thermal conductivity compared with aluminum oxide also makes the cooling performance of silicon-based TE devices better than traditional ceramic TE devices.
The cooling effect of thermoelectric materials depends on the Peltier effect. When an external current is applied to a circuit composed of n-type and p-type thermoelectric units, the current will drive carriers in the thermoelectric units to move from one side to the other. When carriers move, heat also flows along with the carriers from one side to the other. Since the direction of heat transfer relies on the applied current, thermoelectric materials can function as a cooler with currents that drive carriers from the heated side to the other side.
A typical silicon-based TE device has a sandwich structure. Thermoelectric materials are sandwiched between two substrates made by high thermal conductivity materials. N-type and p-type thermoelectric units are connected sequentially in series as the middle layer. When a high power LED generates heat, the heat will first transfer through the top substrate to the thermoelectric units. With an applied external current, the heat will then be forced to flow to the bottom substrate through the thermoelectric units so that the temperature of the high power LED can be stable.

Liquid cooling system

Cooling systems using liquids such as liquid metals, water, and stream also actively manage high power LED's temperature. Liquid cooling systems are made up of a driving pump, a cold plate, and a fan-cooled radiator. The heat generated by a high power LED will first transfer to liquids through a cold plate. Then liquids driven by a pump will circulate in the system to absorb the heat. Lastly, a fan-cooled radiator will cool the heated fluids for the next circulation. The circulation of liquids manages the temperature of the high power LED.