Theodore Nicolas Gobley


Theodore Gobley, who first isolated, and ultimately determined the chemical structure of lecithin, the first identified and characterized member of the phospholipids class, and a pioneer researcher in the study and analysis of the chemical components of brain tissues, was born in Paris on 11 May 1811 and died in Bagneres-de-Luchon on 1 September 1876.

Biography and academic courses

Gobley's family originated from the Yonne region, a very rural hilly area of Burgundy, and the small city Fulvy. His father had settled at the end of the 18th century as a wine broker in Paris, marrying a young lady in a family long established in that trade in the capital city of France.
Wine trading had strong links with alcoholic distillation, some close kin of the Boutron family were indeed spirits distillers, and it is likely this environment that led Theodore to studies in chemistry and pharmacy.
Indeed, an historical study conducted in 1957 by P. et C. Chatagnon on the early steps of brain tissues chemical structure studies mentions that Gobley effected a stay as apprentice by one of his parents named Guerin, indicated as pharmacist.
Whatever the initial lead, further on Gobley entered full grade studies in pharmacy and in the early 1830s attended courses delivered by one of the great figures of French pharmaceutical and chemistry arts of that time, Pierre Jean Robiquet, of whom he became a close collaborator, and ultimately his son-in-law, through marrying Laure Robiquet, one of the daughters of his master and mentor.
Robiquet, a long-standing professor at the Ecole de Pharmacie in Paris was a very prominent, respected and honoured player among the French chemists/pharmacists community of the first half of the 19th century: member of the ":fr:Académie nationale de pharmacie|Société de Pharmacie" later on designated as the ":fr:Académie nationale de pharmacie|Académie Nationale de Pharmacie", of which he was Secretary General then President, , member of the "Académie de Médecine", member of the Académie des Sciences, distinguished with the order of Légion d'Honneur, author of numerous studies and pioneering work in the research of complex molecules in natural bodies, either plants or animals, who had isolated such fundamentals products, as caffeine, cantharidin, and most of all the alizarin, a powerful and stable red dye that was to become one of the first dyes to be mass-produced through a pure chemical synthesis path.
Theodore Gobley qualified as a pharmacist in 1835, married Laure Robiquet in 1837, and established himself as pharmacist in Paris ; in parallel to his trade, in his personal lab he conducted his research, and followed a path very similar to that of his father-in–law : he entered the Ecole de Pharmacie as professor in 1842, became a member of the :fr:Académie nationale de pharmacie|Académie Nationale de Pharmacie in 1843, of which he became president in 1861, and was admitted as a member of the Académie de Médecine that same year.
While conducting various works on a very diversified range of topics very much like most pharmacist/chemists of the 19th century, Gobley singled himself out by a somehow unique lifelong pursuit in the study of lipids in the living animals reign, whereby he demonstrated the universal presence of a fundamental substance, which he named lecithin, and the exact composition of which he pursued during thirty years.
Theodore Gobley was also a philanthropist, and he was involved in the management of a local administration office for the housing of poorer people in the "Département de la Seine".
One of Gobley's daughters married composer Paul Collin. Gobley died on 1 September 1876 in the Pyrenean thermal resort of "Bagnères-de-Luchon, where he was on a family trip. His burial place lies at ":fr:Cimetière du Montparnasse|cimetière Montparnasse" in southern Paris.

Discoverer of lecithin and phospholipids

In the course of the first half of the 19th century, several French chemists had initiated some tries at the chemical components of brain tissues, but tools and methods for analysis were poor and results fairly unsatisfactory; however they had consistently obtained through different methods, mostly through dissolution in warm alcohol of brain matter, a lipidic substance of more of less stable composition which they had diversely called "matière blanche", "cérébrote", acide cérébrique.
Obviously, the brain tissues were not solely composed of that, and confusion was high as to their actual composition, with especially Edmond Fremy holding, based on his work on "acide cerebrique", for a blend of neutral lipids such as olein and phosphoric acid.
Gobley found a masterly solution to this question in a series of careful incremental steps. Building on a succession of biological tissue models : egg yolk, carp fish eggs, carp fish roe, brain matter of sundry higher class vertebrae such as chicken, and ultimately man, fat matters in human fluids: blood, bile, Theodore Gobley, in a series of works assiduously pursued over a span of more than 30 years, classified the several fat matters from a variety of biological tissues, characterized their several properties, identified their respective structure, established bridges between wide apart categories and branches of zoology, shed light on similarities of tissues build-up and specified their differences depending on their function.

Early studies on egg yolk chemical components, 1843–1847

In a first step during 1845 Gobley achieved a ground breaking first work where he analysed in detail the lipids in the egg yolk, obtaining from egg yolk byproducts never before evidenced in that matter:
While evidencing the first two could somehow be looked at with some more or less natural expectation, given their prevailing presence previously demonstrated in a variety of organs or corporeal fluids, the latter one was until then exclusively known as a byproduct of direct chemical preparation.
Gobley in addition brought full details as to the constitution of the oily part of egg yolk, which he determined to be made up of oleine, margarine and a cholesterin, previously evidenced by Louis-René Le Canu and which he demonstrated has entirely identical properties to the one isolated from bile by Michel Eugène Chevreul.
In the immediate wake, in a second step in 1847 Gobley took a global view of the chemical structure of egg yolk and proposed for its lipid part a model comprising two distinct fractions:
In this very same work, Gobley developed an awareness that this phosphoric part was a new, non-characterized and complex component of a precise nature and stable structure, not a mixture of sub-products in varying proportions:
Having recognized the uniqueness of this component from this work in the pivotal year 1847, Gobley henceforth bore most of his research efforts on it.
Already in this same year of 1847, Theodore Gobley realized the deep similarities of chemical structure between brain tissues and egg yolk.
Taking up the previous work of Vauquelin, Couërbe and Frémy, he isolated as they had from the fat matters of animal brain as well as from the human brain a phosphoric fraction, but going one step further, he demonstrated that this brain matter yields through hydrolysis exactly the same set of by-products that he had obtained from egg yolk: ever the triad oleic acid, margaric acid, glycerophosphoric acid.
This set of solid results led him into proposing for cerebral tissues a chemical structure parallel to that of egg yolk, relying on a phosphoric part, lecithin, and a non-phosphoric, nitrogenous part, cerebrin. This approach set him immediately at odds with the views developed up to then by Edmond Frémy, the prominent specialist of that period regarding the chemical study of the brain and a member of the Académie des Sciences; Frémy's views were that the phosphoric fraction of brain was related to the phospho-oleic acid.
Another twenty years were employed by Gobley to fully demonstrate the point.

The identification and chemical breakdown of lecithin, the first of phospholipids, 1848–1874

In the course of the next three years 1848–1850, Theodore Gobley extended the scope of his research in parallel over egg yolk, carp fish eggs, fish roe, and brain tissue.
In 1850, he evidenced the presence of his "matière phosphorée", with identical properties, in carp fish eggs; he proposed for it the name of lecithin which history upheld, from the Greek lekithos , thus underlining the clear link with his early studies.
And in its wake he demonstrated that lecithin, however obtained, and even though not totally purified, always yields a mix of oleic acid, margaric acid and glycerophosphoric acid when hydrolyzed, and under no circumstances whatsoever anything like phosphoric acid which would have been expected if ordinary fat matter acids, such as phospho-oleic acid, had been involved.
Conversely, he demonstrated that the non phosphoric fraction of egg yolk, that he had called "cérébrine" is absolutely identical in chemical breakdown and reactive properties to the "acide cérébrique" identified by Edmond Frémy and M. R. D. Thompson in the brain.
In 1852, he evidenced the presence of lecithin in veinous blood, and in 1856, in bile as well.
However, he still lacked one brick for a complete breakdown of lecithin's structure.
That brick was found during the 1860s by parallel work conducted mainly in Germany, that identified yet a new component of biological fat matters, choline, first in the liver-produced bile by the German chemist Adolph Strecker, then shortly afterward in the human brain through the research of Oscar Liebreich in Berlin and in his wake complementary contributions by Dibkowsky, Baeyer and Wurtz.
Using these additions to his own work, Theodore Gobley in 1874 crowned this long, patient and unyielding series of steps through a final proposal of a complete structure for lecithin, whose hydrolysis yields exactly one oleic acid, one margaric acid, one glycerophosphoric acid and one choline.
Later studies expanded the egg yolk lecithin into a wide family of lecithins answering to this structure, combining with a choline head and glycerophosphoric acid a variety of fatty acids. In general, a lecithin, or more precisely a phosphatidylcholine is obtained using a saturated fatty acid, in the example here palmitic acid or hexadecanoic acid H3C-.

The first global overview of brain tissues chemical structure

The complete series of results led Theodore Gobley into proposing for brain viscous matter a structure under four main components :
Theodore Gobley thus was the discoverer of the entirely new class of phospholipids and a founding pioneer in the understanding of the chemical basis of brain structure and build-up.

Other research, investigations and discoveries

In parallel, Theodore Gobley developed a number of additional threads of research of a more mainstream type:
In cooperation with a French doctor, member of the Academie de Medecine, Jean-Léonard-Marie Poiseuille, he published some results on urea in blood and urine.
In liaison with his commitment in public health matters and institutions, he involved himself in various studies on toxics, human nutrition and health, and the safety of industrial processes: thus he successively investigated toxins in toadstools, medicinal real or supposed properties of diverse plants, herbs and preparations, toxicity of lead in widespread tins used for cooking utensils, poisonous effects of rye.
In the tradition of the methods of Robiquet, from the natural vanilla fruit, he obtained in 1858 the very first samples of pure vanillin, its active flavoring principle. Gobley lived just long enough to see this breakthrough bring about the advent of artificial industrial vanillin synthesis, in a process based on glycosides extracted from the sap of pine trees, opening the path to the extraordinary expansion of the use of that very popular flavour. Incidentally that also brought about the complete collapse of the growing of natural vanilla and the related industry, but that was probably not intended by Gobley.

Publications