Technical debt
Technical debt is a concept in software development that reflects the implied cost of additional rework caused by choosing an easy solution now instead of using a better approach that would take longer.
As with monetary debt, if technical debt is not repaid, it can accumulate 'interest', making it harder to implement changes. Unaddressed technical debt increases software entropy. Technical debt is not necessarily a bad thing, and sometimes is required to move projects forward. On the other hand, some experts claim that the "technical debt" metaphor tends to minimize the impact, which results in insufficient prioritization of the necessary work to correct it.
As a change is started on a codebase, there is often the need to make other coordinated changes in other parts of the codebase or documentation. Changes required that are not completed are considered debt, and until paid, will incur interest on top of interest, making it cumbersome to build a project. Although the term is used in software development primarily, it can also be applied to other professions.
Causes
Common causes of technical debt include:- Insufficient up-front definition, where requirements are still being defined during development, development starts before any design takes place. This is done to save time but often has to be reworked later.
- Business pressures, where the business considers getting something released sooner before the necessary changes are complete, builds up technical debt comprising those uncompleted changes.
- Lack of process or understanding, where businesses are blind to the concept of technical debt, and make decisions without considering the implications.
- Tightly-coupled components, where functions are not modular, the software is not flexible enough to adapt to changes in business needs.
- Lack of a test suite, which encourages quick and risky band-aid bug fixes.
- Lack of documentation, where code is created without supporting documentation. The work to create documentation represents debt.
- Lack of collaboration, where knowledge isn't shared around the organization and business efficiency suffers, or junior developers are not properly mentored.
- Parallel development on multiple branches accrues technical debt because of the work required to merge the changes into a single source base. The more changes done in isolation, the more debt.
- Delayed refactoring – As the requirements for a project evolve, it may become clear that parts of the code have become inefficient or difficult to edit and must be refactored in order to support future requirements. The longer refactoring is delayed, and the more code is added, the bigger the debt.
- Lack of alignment to standards, where industry standard features, frameworks, technologies are ignored. Eventually integration with standards will come, and doing so sooner will cost less.
- Lack of knowledge, when the developer doesn't know how to write elegant code.
- Lack of ownership, when outsourced software efforts result in in-house engineering being required to refactor or rewrite outsourced code.
- Poor technological leadership, where poorly thought out commands are handed down the chain of command.
- Last minute specification changes, these have potential to percolate throughout a project but no time or budget to see them through with documentation and checks.
Types
Reckless | Prudent | |
Deliberate | "We don't have time for design" | "We must ship now and deal with consequences " |
Inadvertent | "What's Layering?" | "Now we know how we should have done it" |
Service or repay the technical debt
Kenny Rubin uses the following status categories:- Happened-upon technical debt—debt that the development team was unaware existed until it was exposed during the normal course of performing work on the product. For example, the team is adding a new feature to the product and in doing so it realizes that a work-around had been built into the code years before by someone who has long since departed.
- Known technical debt—debt that is known to the development team and has been made visible using one of the previously discussed approaches.
- Targeted technical debt—debt that is known and has been targeted for servicing by the development team.
Consequences
The buildup of technical debt is a major cause for projects to miss deadlines. It is difficult to estimate exactly how much work is necessary to pay off the debt. For each change that is initiated, an uncertain amount of uncompleted work is committed to the project. The deadline is missed when the project realizes that there is more uncompleted work than there is time to complete it in. To have predictable release schedules, a development team should limit the amount of work in progress in order to keep the amount of uncompleted work small at all times.
If enough work is completed on a project to not present a barrier to submission, then a project will be released which still carries a substantial amount of technical debt. If this software reaches production, then the risks of implementing any future refactors which might address the technical debt increase dramatically. Modifying production code carries the risk of outages, actual financial losses and possibly legal repercussions if contracts involve service-level agreements. For this reason we can view the carrying of technical debt to production almost as if it were an increase in interest rate and the only time this decreases is when deployments are turned down and retired.
While Manny Lehman's Law already indicated that evolving programs continually add to their complexity and deteriorating structure unless work is done to maintain them, Ward Cunningham first drew the comparison between technical complexity and debt in a 1992 experience report:
In his 2004 text, Refactoring to Patterns, Joshua Kerievsky presents a comparable argument concerning the costs associated with architectural negligence, which he describes as "design debt".
Activities that might be postponed include documentation, writing tests, attending to TODO comments and tackling compiler and static code analysis warnings. Other instances of technical debt include knowledge that isn't shared around the organization and code that is too confusing to be modified easily.
Writing about PHP development in 2014, Junade Ali said:
Grady Booch compares how evolving cities is similar to evolving software-intensive systems and how lack of refactoring can lead to technical debt.
In open source software, postponing sending local changes to the upstream project is a form of technical debt.