In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle. Among these are the following From these one can derive identities expressing the sine, cosine, and tangent as functions of tangents of half-angles:
Proofs
Algebraic proofs
Use double-angle formulae and, taking the quotient of the formulae for sine and cosine yields Combining the Pythagorean identity with the double-angle formula for the cosine, , rearranging, and taking the square roots yields and which, upon division gives = = = or alternatively = = =. Also, using the angle addition and subtraction formulae for both the sine and cosine one obtains: Pairwise addition of the above four formulae yields: Setting and and substituting yields: Dividing the sum of sines by the sum of cosines one arrives at:
Geometric proofs
Applying the formulae derived above to the rhombus figure on the right, it is readily shown that In the unitcircle, application of the above shows that. According to similar triangles, proof of the tangent half-angle formula
In various applications of trigonometry, it is useful to rewrite the trigonometric functions in terms of rational functions of a new variable. These identities are known collectively as the tangent half-angle formulae because of the definition of. These identities can be useful in calculus for converting rational functions in sine and cosine to functions of in order to find their antiderivatives. Technically, the existence of the tangent half-angle formulae stems from the fact that the circle is an algebraic curve of genus 0. One then expects that the circular functions should be reducible to rational functions. Geometrically, the construction goes like this: for any point on the unit circle, draw the line passing through it and the point. This point crosses the -axis at some point. One can show using simple geometry that. The equation for the drawn line is. The equation for the intersection of the line and circle is then a quadratic equation involving. The two solutions to this equation are and. This allows us to write the latter as rational functions of . The parameter represents the stereographic projection of the point onto the -axis with the center of projection at. Thus, the tangent half-angle formulae give conversions between the stereographic coordinate on the unit circle and the standard angular coordinate. Then we have and By eliminating phi between the directly above and the initial definition of, one arrives at the following useful relationship for the arctangent in terms of the natural logarithm In calculus, the Weierstrass substitution is used to find antiderivatives of rational functions of and . After setting This implies that for some integer, and therefore
Hyperbolic identities
One can play an entirely analogous game with the hyperbolic functions. A point on a hyperbola is given by . Projecting this onto -axis from the center gives the following: with the identities and The use of this substitution for finding antiderivatives was introduced by Karl Weierstrass. Finding in terms of leads to following relationship between the hyperbolic arctangent and the natural logarithm:
Comparing the hyperbolic identities to the circular ones, one notices that they involve the same functions of, just permuted. If we identify the parameter in both cases we arrive at a relationship between the circular functions and the hyperbolic ones. That is, if then where is the Gudermannian function. The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic ones that does not involve complex numbers. The above descriptions of the tangent half-angle formulae give a geometric interpretation of this function.
Pythagorean triples
The tangent of half of an acute angle of a right triangle whose sides are a Pythagorean triple will necessarily be a rational number in the interval. Vice versa, when a half-angle tangent is a rational number in the interval, there is a right triangle that has the full angle and that has side lengths that are a Pythagorean triple.