TRPM5


Transient receptor potential cation channel subfamily M member 5, also known as long transient receptor potential channel 5 is a protein that in humans is encoded by the TRPM5 gene.

Function

TRPM5 is a calcium-activated non-selective cation channel that induces depolarization upon increases in intracellular calcium, it is a signal mediator in chemosensory cells. Channel activity is initiated by a rise in the intracellular calcium, and the channel permeates monovalent cations as K+ and Na+.
TRPM5 is a key component of taste transduction in the gustatory system of bitter, sweet and umami tastes being activated by high levels of intracellular calcium. It has also been targeted as a possible contributor to fat taste signaling. The calcium dependent opening of TRPM5 produces a depolarizing generator potential which leads to an action potential.
TRPM5 is expressed in pancreatic β-cells where it is involved in the signaling mechanism for insulin secretion. The potentiation of TRPM5 in the β-cells leads to increased insulin secretion and protects against the development of type 2 diabetes in mice. Further expression of TRPM5 can be found in tuft cells, solitary chemosensory cells and several other cell types in the body that have a sensory role.

Drugs modulating TRPM5

The role of TRPM5 in the pancreatic β-cell makes it a target for the development of novel antidiabetic therapies.

Agonists

Selective blocking agents of TRPM5 ion channels can be used to identify TRPM5 currents in primary cells. Most identified compounds show, however, a poor selectivity between TRPM4 and TRPM5 or other ion channels.