Symbion


Symbion is the name of a genus of commensal aquatic animals, less than 0.5 mm wide, found living attached to the mouthparts of cold-water lobsters. They have sac-like bodies, and three distinctly different forms in different parts of their two-stage life-cycle. They appear so different from other animals that they were assigned their own, new phylum Cycliophora shortly after they were discovered in 1995. This was the first new phylum of multicelled organism to be discovered since the Loricifera in 1983.

Taxonomy

Symbion was discovered in 1995 by Reinhardt Kristensen and Peter Funch on the mouthparts of the Norway lobster, and other, related, species have since been discovered on:
The genus is so named because of its commensal relationship with the lobster - it feeds on the leftovers from the lobster's own meals.
The genus Symbion are peculiar microscopic animals, with no obvious close relatives, and which was therefore given its own phylum, called Cycliophora. The phylogenetic position of Symbion remains unclear: originally the phyla Ectoprocta and Entoprocta were considered possible relatives of Symbion, based on structural similarities. However, genetic studies suggest that Symbion may be more closely related to Gnathifera.

Description

Symbion pandora has a bilateral, sac-like body with no coelom. There are three basic life stages:
Symbion reproduce both asexually and sexually, and has a complex reproduction cycle, a strategy evolved to produce as many offspring as possible that can survive and find a new host when the lobster they live on shed its shell. The asexual individuals are the largest ones. The sexual individuals doesn't eat. During fall they make copies of themselves, where a new individual grows inside the parent body, one offspring at the time. The new offspring attach themselves to an available spot on the lobster, begins to feed and eventually start making new copies of themselves.
In early winter, the asexual animals starts producing males. When the male is born, it crawls away from the parent and glue itself to another asexual individual. Once attached, the male produce two dwarf males inside its body, which turns into a hollow pouch. Each of the two dwarf males are about hundred times smaller than the asexual individual they are attached to, and their body starts out with about 200 cells, but this number has been reduced to just 47 by the time they reach maturity. 34 of the cells form its nervous system, and three more becomes sensory cells used to help them feel their surroundings. Eight cells becomes mucus glands, which produce mucus that helps them move across the surface. The final two cells form the testes, which make the sperm that fertilize the female’s egg. Most of the cells of the dwarf males also lose their nucleus, and make them shrink to almost half their size, which is an adaptation that allows two mature individuals to fit inside the body of the parent male. Two males increases the chances to fertilize a female.
By late winter, when the large feeding individuals in the colony have males attached to their bodies, they start making females. Each female has a single egg inside them. When she is about the be born, one of the two dwarf males fertilize her when she comes out. The fertilized female find herself a place on the host's whiskers where she attach herself. Inside her the developing embryo extracts all the nutrients it needs to grow from its mother, and by the time it is ready to be born, all that remains of the mother is an empty husk. This new offspring is a strong swimmer unlike all the other forms in the colony, and those who succeeds in finding a new host will attach themselves to its mouthparts, where it will grow a stomach and mouthparts, morphing into a large, feeding and asexual type, starting the cycle all over again.
The larval stage may be unscientifically referred to as sea worms.