Superfluidity was originally discovered in liquid helium by Pyotr Kapitsa and John F. Allen. It has since been described through phenomenology and microscopic theories. In liquid helium-4, the superfluidity occurs at far higher temperatures than it does in helium-3. Each atom of helium-4 is a boson particle, by virtue of its integer spin. A helium-3 atom is a fermion particle; it can form bosons only by pairing with itself at much lower temperatures. The discovery of superfluidity in helium-3 was the basis for the award of the 1996 Nobel Prize in Physics. This process is similar to the electron pairing in superconductivity.
Superfluidity in an ultracold fermionic gas was experimentally proven by Wolfgang Ketterle and his team who observed quantum vortices in 6Li at a temperature of 50 nK at MIT in April 2005. Such vortices had previously been observed in an ultracold bosonic gas using 87Rb in 2000, and more recently in two-dimensional gases. As early as 1999 Lene Hau created such a condensate using sodium atoms for the purpose of slowing light, and later stopping it completely. Her team subsequently used this system of compressed light to generate the superfluid analogue of shock waves and tornadoes:
Superfluids in astrophysics
The idea that superfluidity exists inside neutron stars was first proposed by Arkady Migdal. By analogy with electrons inside superconductors forming Cooper pairs because of electron-lattice interaction, it is expected that nucleons in a neutron star at sufficiently high density and low temperature can also form Cooper pairs because of the long-range attractive nuclear force and lead to superfluidity and superconductivity.
is an approach in theoretical physics and quantum mechanics where the physical vacuum is viewed as superfluid. The ultimate goal of the approach is to develop scientific models that unify quantum mechanics with gravity. This makes SVT a candidate for the theory of quantum gravity and an extension of the Standard Model. It is hoped that development of such theory would unify into a single consistent model of all fundamental interactions, and to describe all known interactions and elementary particles as different manifestations of the same entity, superfluid vacuum. On the macro-scale a larger similar phenomenon has been suggested as happening in the :wikt:murmuration|murmurations of starlings. The rapidity of change in flight patterns mimics the phase change leading to superfluidity in some liquid states.