Sudan function


In the theory of computation, the Sudan function is an example of a function that is recursive, but not primitive recursive. This is also true of the better-known Ackermann function. The Sudan function was the first function having this property to be published.
It was discovered in 1927 by Gabriel Sudan, a Romanian mathematician who was a student of David Hilbert.

Definition

Value tables

y\x012345
0012345
1123456
2234567
3345678
4456789
55678910
667891011

y\x01234567891011121314
001234567891011121314
11357911131517192123252729
24812162024283236404448525660
3111927354351596775839199107115123
42642587490106122138154170186202218234250
55789121153185217249281313345377409441473505
61201842483123764405045686326967608248889521016
7247375503631759887101511431271139915271655178319112039
85027581014127015261782203822942550280630623318357438304086
9101315252037254930613573408545975109562161336645715776698181
102036306040845108613271568180920410228112521227613300143241534816372
11408361318179102271227514323163711841920467225152456326611286593070732755
1281781227416370204662456228658327543685040946450424913853234573306142665522
131636924561327534094549137573296552173713819059009798289106481114673122865131057
143275249136655208190498288114672131056147440163824180208196592212976229360245744262128

In general, F1 is equal to F1 + 2y x.
y\x012345
0012345
1182774185440
219F1 = 10228F1 ≈ 1.55 F1 ≈ 5.74 F1 ≈ 3.67 F1 ≈ 5.02