Stormwater


Stormwater, also spelled storm water, is water that originates from rain, including snow and ice melt. Stormwater can soak into the soil, be stored on the land surface in ponds and puddles, evaporate, or runoff. Most runoff is conveyed directly to nearby streams, rivers, or other water bodies without treatment.
In natural landscapes, such as forests, soil absorbs much of the stormwater. Plants also reduce stormwater by improving infiltration, intercepting precipitation as it falls, and by taking up water through their roots. In developed environments, unmanaged stormwater can create two major issues: one related to the volume and timing of runoff and the other related to potential contaminants the water is carrying.
Stormwater is also an important resource as human population and demand for water grow, particularly in arid and drought-prone climates. Stormwater harvesting techniques and purification could potentially make some urban environments self-sustaining in terms of water.

Stormwater pollution

With less vegetation and more impervious surfaces, developed areas allow less rain to infiltrate into the ground, and more runoff is generated than in the undeveloped condition. Additionally, conveyances such as ditches and storm sewers quickly transport runoff away from commercial and residential areas into nearby water bodies. This greatly increases the volume of water in waterways and the discharge of those waterways, leading to erosion and flooding. Because the water is flushed out of the watershed during the storm event, little infiltrates the soil, replenishes groundwater, or supplies stream baseflow in dry weather.
A first flush is the initial runoff of a rainstorm. During this phase, polluted water entering storm drains in areas with high proportions of impervious surfaces is typically more concentrated compared to the remainder of the storm. Consequently, these high concentrations of urban runoff result in high levels of pollutants discharged from storm sewers to surface waters.
Daily human activities result in deposition of pollutants on roads, lawns, roofs, farm fields, and other land surfaces. Such pollutants include sediment, nutrients, bacteria, pesticides, metals, and petroleum byproducts. When it rains or there is irrigation, water runs off and ultimately makes its way to a river, lake, or the ocean. While there is some attenuation of these pollutants before entering receiving waters, polluted runoff results in large enough quantities of pollutants to impair receiving waters.

Stormwater runoff as a source of pollution

In addition to the pollutants carried in stormwater runoff, urban runoff is being recognized as a cause of pollution in its own right.
In natural catchments surface runoff entering waterways is a relatively rare event, occurring only a few times each year and generally after larger storm events. Before development occurred most rainfall soaked into the ground and contributed to groundwater recharge or was recycled into the atmosphere by vegetation through evapotranspiration.
Modern drainage systems, which collect runoff from impervious surfaces, ensure that water is efficiently conveyed to waterways through pipe networks, meaning that even small storm events result in increased waterway flows.
In addition to delivering higher pollutants from the urban catchment, increased stormwater flow can lead to stream erosion, encourage weed invasion, and alter natural flow regimes. Native species often rely on such flow regimes for spawning, juvenile development, and migration.
In some areas, especially along the U.S. coast, polluted runoff from roads and highways may be the largest source of water pollution. For example, about 75 percent of the toxic chemicals getting to Seattle, Washington's Puget Sound are carried by stormwater that runs off paved roads and driveways, rooftops, yards, and other developed land.
For Class V stormwater injection wells the U.S. Environmental Protection Agency reports “the contaminants that have been observed above drinking water standards or health advisory limits in storm water drainage well injectate are aluminum, antimony, arsenic, beryllium, cadmium, chloride, chromium, color, copper, cyanide, iron, lead, manganese, mercury, nickel, nitrate, pH, selenium, TDS, turbidity, zinc, benzene, benzopyrene, bis phtlalate, chlordane, dichloromethane, fecal coliforms, methyl-tertbutyl- ether, pentachlorophenol, tetrachloroethylene, and trichloroethylene.” The U.S. Geological Survey reports “Many of the contaminants normally associated with runoff from the Nation's highways have the potential for biological effects.... Highway-runoff contaminants of particular interest throughout the United States include deicers, nutrients, metals, industrial/urban-organic chemicals, sediment, and agricultural chemicals from industrial, commercial, residential, agricultural, and highway sources.” In addition to the problem of chemical contaminants in stormwater, this USGS report also identifies problems of physical habitat disturbance that Best Management Practices do not eliminate, “Some of the most substantial biological changes caused by development are directly or indirectly related to altered hydrology. Despite efforts to use BMPs to attenuate the hydrologic effects of development, increased peak flows and more flashy runoff will cause physical modifications to the channel shape, bed substrate, and banks of receiving waters, with corresponding effects on aquatic habitat and biota. Loss of forest canopy, increases in paved area, and shallow and muddy detention areas also may cause thermal pollution problems, which can exacerbate chemical stressors on aquatic organisms in receiving waters.” U.S. Congress prohibits Class V stormwater wells to be authorized by permit or by rule where they endanger drinking water sources.

Urban flooding

Stormwater is a major cause of urban flooding. Urban flooding is the inundation of land or property in a built-up environment caused by stormwater overwhelming the capacity of drainage systems, such as storm sewers. Although triggered by single events such as flash flooding or snow melt, urban flooding is a condition, characterized by its repetitive, costly and systemic impacts on communities. In areas susceptible to urban flooding, backwater valves and other infrastructure may be installed to mitigate losses.
Where properties are built with basements, urban flooding is the primary cause of basement and sewer backups. Although the number of casualties from urban flooding is usually limited, the economic, social and environmental consequences can be considerable: in addition to direct damage to property and infrastructure, chronically wet houses are linked to an increase in respiratory problems and other illnesses. Sewer backups are often from the sanitary sewer system, which takes on some storm water as a result of Infiltration/Inflow.
Urban flooding has significant economic implications. In the U.S., industry experts estimate that wet basements can lower property values by 10 to 25 percent and are cited among the top reasons for not purchasing a home. According to the Federal Emergency Management Agency almost 40 percent of small businesses never reopen their doors following a flooding disaster. In the UK, urban flooding is estimated to cost £270 million a year in England and Wales; 80,000 homes are at risk.
A study of Cook County, Illinois, identified 177,000 property damage insurance claims made across 96 percent of the county’s ZIP codes over a five-year period from 2007 to 2011. This is the equivalent of one in six properties in the County making a claim. Average payouts per claim were $3,733 across all types of claims, with total claims amounting to $660 million over the five years examined.
An example of an urban flooding control project is the Brays Bayou Greenway Framework in Houston, Texas. Brays Bayou and its tributaries drain a watershed of approximately 88,000 acres south of downtown Houston. The federally-funded improvement project created a short-term solution by improving the bayou's drainage capacity, and identified a broad set of potential recreation and open space opportunities along the 35 miles of the bayou and tributaries.

Stormwater creation of sinkhole collapses

An example of urban stormwater creating a sinkhole collapse is the February 25, 2002 Dishman Lane collapse in Bowling Green, Kentucky where a sinkhole suddenly dropped the road under four traveling vehicles. The nine-month repair of the Dishman Lane collapse cost a million dollars but there remains the potential for future problems.
In undisturbed areas with natural subsurface drainage, soil and rock fragments choke karst openings thereby being a self-limitation to the growth of openings. The undisturbed karst drainage system becomes balanced with the climate so it can drain the water produced by most storms. However, problems occur when the landscape is altered by urban development. In urban areas with natural subsurface drainage there are no surface streams for the increased stormwater from impervious surfaces such as roofs, parking lots, and streets to runoff into. Instead, the stormwater enters the subsurface drainage system by moving down through the ground. When the subsurface water flow becomes great enough to transport soil and rock fragments, the karst openings grow rapidly. Where karst openings are roofed by supportive limestone, there frequently is no surface warning that an opening has grown so large it will suddenly collapse catastrophically. Therefore, land use planning for new development needs to avoid karst areas. Ultimately taxpayers end up paying the costs for poor land use decisions.

Stormwater management

Managing the quantity and quality of stormwater is termed, "Stormwater Management." The term Best Management Practice or stormwater control measure is often used to refer to both structural or engineered control devices and systems to treat or store polluted stormwater, as well as operational or procedural practices. Stormwater management includes both technical and institutional aspects.

Technical aspects

Integrated water management of stormwater has the potential to address many of the issues affecting the health of waterways and water supply challenges facing the modern urban city. IWM is often associated with green infrastructure when considered in the design process. Professionals in their respective fields, such as urban planners, architects, landscape architects, interior designers, and engineers, often consider integrated water management as a foundation of the design process.
Also known as low impact development in the United States, or Water Sensitive Urban Design in Australia, IWM has the potential to improve runoff quality, reduce the risk and impact of flooding and deliver an additional water resource to augment potable supply.
The development of the modern city often results in increased demands for water supply due to population growth, while at the same time altered runoff predicted by climate change has the potential to increase the volume of stormwater that can contribute to drainage and flooding problems. IWM offers several techniques, including stormwater harvest, infiltration, biofiltration or bioretention, to store and treat runoff and release it at a controlled rate to reduce impact on streams and wetland treatments.
There are many ways of achieving LID. The most popular is to incorporate land-based solutions to reduce stormwater runoff through the use of retention ponds, bioswales, infiltration trenches, sustainable pavements, and others noted above. LID can also be achieved by utilizing engineered, manufactured products to achieve similar, or potentially better, results as land-based systems. The proper LID solution is one that balances the desired results with the associated costs. Green roofs are also another low cost solution.
IWM as a movement can be regarded as being in its infancy and brings together elements of drainage science, ecology and a realization that traditional drainage solutions transfer problems further downstream to the detriment of the environment and water resources.

Regulations

United States

Federal requirements

In the United States, the Environmental Protection Agency is charged with regulating stormwater pursuant to the Clean Water Act. The goal of the CWA is to restore all "Waters of the United States" to their "fishable" and "swimmable" conditions. Point source discharges, which originate mostly from municipal wastewater and industrial wastewater discharges, have been regulated since enactment of the CWA in 1972. Pollutant loadings from these sources are tightly controlled through the issuance of National Pollution Discharge Elimination System permits. However, despite these controls, thousands of water bodies in the U.S. remain classified as "impaired," meaning that they contain pollutants at levels higher than is considered safe by EPA for the intended beneficial uses of the water. Much of this impairment is due to polluted runoff, generally in urbanized watersheds.
To address the nationwide problem of stormwater pollution, Congress broadened the CWA definition of "point source" in 1987 to include industrial stormwater discharges and Municipal Separate Storm Sewer Systems. These facilities are required to obtain NPDES permits. In 2017, about 855 large municipal systems, and 6,695 small systems are regulated by the permit system.

State and local requirements

EPA has authorized 47 states to issue NPDES permits. In addition to implementing the NPDES requirements, many states and local governments have enacted their own stormwater management laws and ordinances, and some have published stormwater treatment design manuals. Some of these state and local requirements have expanded coverage beyond the federal requirements. For example, the State of Maryland requires erosion and sediment controls on construction sites of 5,000 sq ft or more. It is not uncommon for state agencies to revise their requirements and impose them upon counties and cities; daily fines ranging as high as $25,000 can be imposed for failure to modify their local stormwater permitting for construction sites, for instance.

Nonpoint source pollution management

Agricultural runoff is classified as nonpoint source pollution under the CWA. It is not included in the CWA definition of "point source" and therefore not subject to NPDES permit requirements. The 1987 CWA amendments established a non-regulatory program at EPA for nonpoint source pollution management consisting of research and demonstration projects. Related programs are conducted by the Natural Resources Conservation Service in the U.S. Department of Agriculture.

Public education campaigns

Education is a key component of stormwater management. A number of agencies and organizations have launched campaigns to teach the public about stormwater pollution, and how they can contribute to solving it. Thousands of local governments in the U.S. have developed education programs as required by their NPDES stormwater permits.
One example of a local educational program is that of the West Michigan Environmental Action Council, which has coined the term Hydrofilth to describe stormwater pollution, as part of its "15 to the River" campaign. Its outreach activities include a rain barrel distribution program and materials for homeowners on installing rain gardens.
Other public education campaigns highlight the importance of green infrastructure in slowing down and treating stormwater runoff. DuPage County Stormwater Management launched the "Love Blue. Live Green." outreach campaign on social media sites to educate the public on green infrastructure and other best management practices for stormwater runoff. Articles, websites, pictures, videos and other media are disseminated to the public through this campaign.

History

Since humans began living in concentrated village or urban settings, stormwater runoff has been an issue. During the Bronze Age, housing took a more concentrated form, and impervious surfaces emerged as a factor in the design of early human settlements. Some of the early incorporation of stormwater engineering is evidenced in Ancient Greece.
A specific example of an early stormwater runoff system design is found in the archaeological recovery at Minoan Phaistos on Crete.