Sorel cement


Sorel cement is a non-hydraulic cement first produced by the French chemist Stanislas Sorel in 1867.
In fact, in 1855, before to work with magnesium compounds, Stanislas Sorel, first developed a two-component cement by mixing zinc oxide powder with a solution of zinc chloride. In a few minutes, he obtained a dense matter harder than limestone.
Only a decade later, Sorel replaced zinc by magnesium in his formula and also obtained a cement with similar favorable properties. This new type of cement was stronger and more elastic than Portland cement, and therefore exhibited a more resilient behavior when submitted to shocks. The matter could be easily molded as plaster when freshly prepared, or machined on a lathe after setting and hardening. It was very hard, could be easily bound to many different types of materials, and colored with pigments. So, it was used to make mosaics and to mimic marble. After mixing with cotton crushed in powder, it was also used as a surrogate material for ivory to fabricate billiard balls resisting to shock.
The Sorel cement is a mixture of magnesium oxide with magnesium chloride with the approximate chemical formula Mg4Cl268, or MgCl2·3Mg2·8H2O, corresponding to a weight ratio of 2.5–3.5 parts MgO to one part MgCl2.
Quite surprisingly, much more recently, another chemist, Charles A. Sorrell – whose family name sound quite similar to this of Stanislas Sorel – also studied the topic and published works on the same family of oxychloride compounds based on zinc and magnesium, just as Sorel did about 100 year before. The zinc oxychloride cement is prepared from zinc oxide and zinc chloride instead of the magnesium compounds.

Composition and structure

The set cement consists chiefly of a mixture of magnesium oxychlorides and magnesium hydroxide in varying proportions, depending on the initial cement formulation, setting time, and other variables. The main stable oxychlorides at ambient temperature are the so-called "phase 3" and "phase 5", whose formulas can be written as 3··8 and 5··8, respectively; or, equivalently, ·4 and ·4.
Phase 5 crystallizes mainly as long needles which are actually rolled-up sheets. These interlocking needles give the cement its strength.
In the long term the oxychlorides absorb and react with carbon dioxide from the air to form magnesium chlorocarbonates.

History

These compounds are the primary components of matured Sorel cement, first prepared in 1867 by Stanislas Sorel.
In the late 19th century, several attempts were made to determine the composition of the hardened Sorel's cement, but the results were not conclusive. Phase 3 was properly isolated and described by Robinson and Waggaman, and phase 5 was identified by Lukens.

Properties

Sorel cement can withstand 10,000–12,000 psi of compressive force whereas standard Portland cement can typically only withstand 7,000–8,000 psi. It also achieves high strength in a shorter time.
Sorel cement has a remarkable capacity to bond with, and contain, other materials. It also exhibits some elasticity, an interesting property increasing its capacity to resist shocks, particularly useful for billiard balls.
The pore solution in wet Sorel cement is slightly alkaline, but significantly less so than that of Portland cement.
Other differences between magnesium-based cements and portland cement include water permeability, preservation of plant and animal substances, and corrosion of metals. These differences make different construction applications suitable.
Prolonged exposure of Sorel cement to water leaches out the soluble, leaving hydrated brucite as the binding phase, which without absorption of, can result in loss of strength.

Fillers and reinforcement

In use, Sorel cement is usually combined with filler materials such as gravel, sand, marble flour, asbestos, wood particles and expanded clays.
Sorel cement is incompatible with steel reinforcement because the presence of chloride ions in the pore solution and the low alkalinity of the cement promote steel corrosion. However, the low alkalinity makes it more compatible with glass fiber reinforcement. It is also better than Portland cement as a binder for wood composites, since its setting is not retarded by the lignin and other wood chemicals.
The resistance of the cement to water can be improved with the use of additives such as phosphoric acid, soluble phosphates, fly ash, or silica.

Uses

Magnesium oxychloride cement is used to make floor tiles and industrial flooring, in fire protection, wall insulation panels, and as a binder for grinding wheels. Due to its resemblance to marble, it is also used for artificial stones, artificial ivory and other similar purposes.
Sorel cement is also studied as a candidate material for chemical buffers and engineered barriers for deep geological repositories of high-level nuclear waste in salt-rock formations. Phase 5 of the magnesium oxychloride could be a useful complement, or replacement, for MgO presently used as a getter in the WIPP disposal chambers to limit the solubility of minor actinides carbonate complexes, while establishing moderately alkaline conditions still compatible with the undisturbed geochemical conditions initially prevailing in situ in the salt formations. The much more soluble calcium oxide and hydroxide are not authorized in WIPP because they would impose a too high pH. As is the second most-abundant cation present in sea water after, and that magnesium compounds are less soluble than these of calcium, magnesium-based buffer materials and Sorel cement are considered more appropriate backfil materials for radioactive waste disposal in deep salt formations than common calcium-based cements. Moreover, as magnesium hydroxychloride is also a possible pH buffer in marine evaporite brines, Sorel cement is expected to less disturb initial in situ conditions prevailing in deep salts formations.

Preparation

Sorel cement is usually prepared by mixing finely divided powder with a concentrated solution of.
In theory, the ingredients should be combined in the molar proportions of phase 5, which has the best mechanical properties. However, the chemical reactions that create the oxychlorides may not run to completion, leaving unreacted particles and/or in pore solution. While the former act as an inert filler, leftover chloride is undesirable since it promotes corrosion of steel in contact with the cement. Excess water may also be necessary to achieve a workable consistency. Therefore, in practice the proportions of magnesium oxide and water in the initial mix are higher than those in pure phase 5. In one study, the best mechanical properties were obtained with a molar ratio : of 13:1.

Production

and magnesite are not abundant raw materials, so their manufacture into Sorel cement is expensive and limited to specialized niche applications requiring modest materials quantities. China is the dominant supplier of raw materials for the production of magnesium oxide and derivatives. Magnesium-based "green cements" derived from the more abundant dolomite deposits, but also containing calcium carbonate, have not to be confused with the original Sorel cement, as this later does not contain calcium oxide. Indeed, Sorel cement is a pure magnesium oxychloride.

External Links