Sinkhole


A sinkhole, also known as a cenote, sink, sink-hole, swallet, swallow hole, or doline, is a depression or hole in the ground caused by some form of collapse of the surface layer. Most are caused by karst processes – the chemical dissolution of carbonate rocks or suffosion processes. Sinkholes vary in size from both in diameter and depth, and vary in form from soil-lined bowls to bedrock-edged chasms. Sinkholes may form gradually or suddenly, and are found worldwide.

Formation

Natural processes

Sinkholes may capture surface drainage from running or standing water, but may also form in high and dry places in specific locations. Sinkholes that capture drainage can hold it in large limestone caves. These caves may drain into tributaries of larger rivers.
The formation of sinkholes involves natural processes of erosion or gradual removal of slightly soluble bedrock by percolating water, the collapse of a cave roof, or a lowering of the water table. Sinkholes often form through the process of suffosion. For example, groundwater may dissolve the carbonate cement holding the sandstone particles together and then carry away the lax particles, gradually forming a void.
Occasionally a sinkhole may exhibit a visible opening into a cave below. In the case of exceptionally large sinkholes, such as the Minyé sinkhole in Papua New Guinea or Cedar Sink at Mammoth Cave National Park in Kentucky, an underground stream or river may be visible across its bottom flowing from one side to the other.
Sinkholes are common where the rock below the land surface is limestone or other carbonate rock, salt beds, or in other soluble rocks, such as gypsum, that can be dissolved naturally by circulating ground water. Sinkholes also occur in sandstone and quartzite terrains.
As the rock dissolves, spaces and caverns develop underground. These sinkholes can be dramatic, because the surface land usually stays intact until there is not enough support. Then, a sudden collapse of the land surface can occur.
On 2 July 2015, scientists reported that active pits, related to sinkhole collapses and possibly associated with outbursts, were found on the comet 67P/Churyumov-Gerasimenko by the Rosetta space probe.

Artificial processes

Collapses, commonly incorrectly labeled as sinkholes also occur due to human activity, such as the collapse of abandoned mines and salt cavern storage in salt domes in places like Louisiana, Mississippi and Texas. More commonly, collapses occur in urban areas due to water main breaks or sewer collapses when old pipes give way. They can also occur from the overpumping and extraction of groundwater and subsurface fluids.
Sinkholes can also form when natural water-drainage patterns are changed and new water-diversion systems are developed. Some sinkholes form when the land surface is changed, such as when industrial and runoff-storage ponds are created; the substantial weight of the new material can trigger a collapse of the roof of an existing void or cavity in the subsurface, resulting in development of a sinkhole.

Classification

Solution sinkholes

Solution or dissolution sinkholes form where water dissolves limestone under a soil covering. Dissolution enlarges natural openings in the rock such as joints, fractures, and bedding planes. Soil settles down into the enlarged openings forming a small depression at the ground surface.

Cover-subsidence sinkholes

Cover-subsidence sinkholes form where voids in the underlying limestone allow more settling of the soil to create larger surface depressions.

Cover-collapse sinkholes

Cover-collapse sinkholes or "dropouts" form where so much soil settles down into voids in the limestone that the ground surface collapses. The surface collapses may occur abruptly and cause catastrophic damages. New sinkhole collapses can also form when man changes the natural water-drainage patterns in karst areas.

Pseudokarst sinkholes

Pseudokarst sinkholes resemble karst sinkholes but formed by processes other than the natural dissolution of rock.

Human accelerated sinkholes

The U.S. Geological Survey says It is a frightening thought to imagine the ground below your feet or house suddenly collapsing and forming a big hole in the ground. Karst experts say man's activities can accelerate collapses of karst sinkholes within a few years compared to karst collapses under natural conditions that evolve over thousands of years. A geotechnical engineer says the most serious sinkhole collapse hazards to life and property results from collapses of cavities in soil that develop where soil falls down into underlying rock cavities. Fluctuation of the water level accelerates this collapse process. When water rises up through fissures in the rock it weakens the soil so that soil fragments fall down. Later as the water level moves downward the softened soil fragments seep deeper into rock cavities. Flowing water in karst conduits carries the soil away allowing the process to continue. Induced sinkholes occur where human activity alters how surface water recharges groundwater. Many man-induced sinkholes occur where surface water gets concentrated instead of the natural diffused recharge. Activities that can accelerate sinkhole collapses include timber removal, ditching, laying pipelines, sewers, water lines, storm drains, drilling, etc. These activities can increase the downward movement of water to exceed the natural rate of groundwater recharge. The increased runoff from the impervious surfaces of roads, roofs, and parking lots also accelerate man-induced sinkhole collapses.
An American Society of Civil Engineers publication says the potential for sinkhole collapse must be a part of land-use planning in karst areas. Since water level changes accelerate sinkhole collapse, measures must be taken to minimize water level changes. Where sinkhole collapse of structures could cause loss of life the public should be made aware of the risks. The areas most susceptible to sinkhole collapse can be identified and avoided. A 1987 U.S. Geological Survey publication says Many induced sinkholes develop with little or no advance warning while others are preceded by warning features such as cracks, sagging, jammed doors, cracking noises,etc. Another U.S. Geological Survey publication says Sinkhole density is an important factor for determining the area most prone to sinkhole development. Where a closed depression has collapsed into a sinkhole we know that the underlying subsurface contains unstable voids, and possibly a cave system. In areas where active sinkholes have developed there is a greater possibility that a new sinkhole will form. Where large cavities exist in the limestone large surface collapses can occur like the Winter Park, Florida sinkhole collapse. Recommendations for land uses in karst areas should avoid or minimize alterations of the land surface and natural drainage. Geotechnical engineers say the current understanding of karst development allows proper site characterization to avoid karst disasters. Most sinkhole disasters are recognizable, predictable, and preventable rather than “acts of God”. In karst areas the traditional foundation evaluations of the ability of soil to support a structure only comes after acceptable results from the geotechnical site investigation for cavities and defects in the underlying rock. Since the soil/rock surface in karst areas are very irregular the number of subsurface samples required per unit area is usually much greater than in non-karst areas.
In 2015 the U.S. Geological Survey reported Repair of damage to buildings, highways, and other infrastructure represents a significant national cost. Sparse and incomplete data show that the average cost of karst-related damages in the United States over the last 15 years is estimated to be at least $300,000,000 per year and the actual total is probably much higher. The U.S. Geological Survey reports the greatest amount of karst sinkhole damage occurs in Florida, Texas, Alabama, Missouri, Kentucky, Tennessee, and Pennsylvania. Possibly the largest recent sinkhole in the USA formed in 1972 as a result of man-made lowering of the water level in a nearby rock quarry. This "December Giant" or "Golly Hole" sinkhole measures 425 feet long, 350 feet wide and 150 feet deep.

Occurrence

Sinkholes tend to occur in karst landscapes. Karst landscapes can have up to thousands of sinkholes within a small area, giving the landscape a pock-marked appearance. These sinkholes drain all the water, so there are only subterranean rivers in these areas. Examples of karst landscapes with a plethora of massive sinkholes include Khammouan Mountains and Mamo Plateau. The largest known sinkholes formed in sandstone are Sima Humboldt and Sima Martel in Venezuela.
Some sinkholes form in thick layers of homogenous limestone. Their formation is facilitated by high groundwater flow, often caused by high rainfall; such rainfall causes formation of the giant sinkholes in the Nakanaï Mountains, on the New Britain island in Papua New Guinea. On the contact of limestone and insoluble rock below it, powerful underground rivers may form, creating large underground voids.
In such conditions, the largest known sinkholes of the world have formed, like the deep Xiaozhai Tiankeng, giant sótanos in Querétaro and San Luis Potosí states in Mexico and others.
Unusual processes have formed the enormous sinkholes of Sistema Zacatón in Tamaulipas, where more than 20 sinkholes and other karst formations have been shaped by volcanically heated, acidic groundwater. This has produced not only the formation of the deepest water-filled sinkhole in the world—Zacatón—but also unique processes of travertine sedimentation in upper parts of sinkholes, leading to sealing of these sinkholes with travertine lids.
The U.S. state of Florida in North America is known for having frequent sinkhole collapses, especially in the central part of the state. Underlying limestone there is from 15 to 25 million years old. On the fringes of the state, sinkholes are rare or non-existent; limestone there is around 120,000 years old.
The Murge area in southern Italy also has numerous sinkholes. Sinkholes can be formed in retention ponds from large amounts of rain. An analysis of a case of sinkhole formation under a retention pond due to a large amount of rain can be seen in a sinkhole collapse study.

Human uses

Sinkholes have been used for centuries as disposal sites for various forms of waste. A consequence of this is the pollution of groundwater resources, with serious health implications in such areas. The Maya civilization sometimes used sinkholes in the Yucatán Peninsula as places to deposit precious items and human sacrifices.
When sinkholes are very deep or connected to caves, they may offer challenges for experienced cavers or, when water-filled, divers. Some of the most spectacular are the Zacatón cenote in Mexico, the Boesmansgat sinkhole in South Africa, Sarisariñama tepuy in Venezuela, the Sótano del Barro in Mexico, and in the town of Mount Gambier, South Australia. Sinkholes that form in coral reefs and islands that collapse to enormous depths are known as blue holes and often become popular diving spots.

Local names

Large and visually unusual sinkholes have been well known to local people since ancient times. Nowadays sinkholes are grouped and named in site-specific or generic names. Some examples of such names are listed below.
The 2010 Guatemala City sinkhole formed suddenly in May of that year; torrential rains from Tropical Storm Agatha and a bad drainage system were blamed for its creation. It swallowed a three-story building and a house; it measured approximately wide and deep. A similar hole had formed nearby in February 2007.
This large vertical hole is not a true sinkhole, as it did not form via the dissolution of limestone, dolomite, marble, or any other water-soluble rock. Instead, they are examples of "piping pseudokarst", created by the collapse of large cavities that had developed in the weak, crumbly Quaternary volcanic deposits underlying the city. Although weak and crumbly, these volcanic deposits have enough cohesion to allow them to stand in vertical faces and to develop large subterranean voids within them. A process called "soil piping" first created large underground voids, as water from leaking water mains flowed through these volcanic deposits and mechanically washed fine volcanic materials out of them, then progressively eroded and removed coarser materials. Eventually, these underground voids became large enough that their roofs collapsed to create large holes.

Crown hole

A crown hole is subsidence due to subterranean human activity, such as mining and military trenches. Examples have included, instances above World War I trenches in Ypres, near mines in Nitra, Slovakia, limestone mine in Dudley, England, above an old gypsum mine in Magheracloone, Ireland.

Notable examples

Some of the largest sinkholes in the world are:

In Africa

Mexico