Simon Donaldson


Sir Simon Kirwan Donaldson is an English mathematician known for his work on the topology of smooth four-dimensional manifolds and Donaldson–Thomas theory. He is currently a permanent member of the Simons Center for Geometry and Physics at Stony Brook University in New York, and a Professor in Pure Mathematics at Imperial College London.

Biography

Donaldson's father was an electrical engineer in the physiology department at the University of Cambridge, and his mother earned a science degree there. Donaldson gained a BA degree in mathematics from Pembroke College, Cambridge in 1979, and in 1980 began postgraduate work at Worcester College, Oxford, at first under Nigel Hitchin and later under Michael Atiyah's supervision. Still a postgraduate student, Donaldson proved in 1982 a result that would establish his fame. He published the result in a paper "Self-dual connections and the topology of smooth 4-manifolds" which appeared in 1983. In the words of Atiyah, the paper "stunned the mathematical world."
Whereas Michael Freedman classified topological four-manifolds, Donaldson's work focused on four-manifolds admitting a differentiable structure, using instantons, a particular solution to the equations of Yang–Mills gauge theory which has its origin in quantum field theory. One of Donaldson's first results gave severe restrictions on the intersection form of a smooth four-manifold. As a consequence, a large class of the topological four-manifolds do not admit any smooth structure at all. Donaldson also derived polynomial invariants from gauge theory. These were new topological invariants sensitive to the underlying smooth structure of the four-manifold. They made it possible to deduce the existence of "exotic" smooth structures—certain topological four-manifolds could carry an infinite family of different smooth structures.
After gaining his DPhil degree from Oxford University in 1983, Donaldson was appointed a Junior Research Fellow at All Souls College, Oxford, he spent the academic year 1983–84 at the Institute for Advanced Study in Princeton, and returned to Oxford as Wallis Professor of Mathematics in 1985. After spending one year visiting Stanford University, he moved to Imperial College London in 1998 as Professor of Pure Mathematics.
In 2014, he joined the Simons Center for Geometry and Physics at Stony Brook University in New York, United States.

Awards and honours

Donaldson received the Junior Whitehead Prize from the London Mathematical Society in 1985 and in the following year he was elected a Fellow of the Royal Society and, also in 1986, he received a Fields Medal at the International Congress of Mathematicians in Berkeley. In addition to being a plenary speaker of the ICM in 1986, he was an invited speaker of the ICM in 1983 in Warsaw and in 1998 in Berlin, as well as a plenary speaker of the ICM in 2018 in Rio de Janeiro. He was awarded the 1994 Crafoord Prize.
In February 2006, Donaldson was awarded the King Faisal International Prize for science for his work in pure mathematical theories linked to physics, which have helped in forming an understanding of the laws of matter at a subnuclear level.
In April 2008, he was awarded the Nemmers Prize in Mathematics, a mathematics prize awarded by Northwestern University.
In 2009 he was awarded the Shaw Prize in Mathematics for their contributions to geometry in 3 and 4 dimensions.
In 2010, he was elected a foreign member of the Royal Swedish Academy of Sciences.
Donaldson was knighted in the 2012 New Year Honours for services to mathematics.
In 2012 he became a fellow of the American Mathematical Society.
In March 2014, he was awarded the degree "Docteur Honoris Causa" by Université Joseph Fourier, Grenoble.
In 2014 he was awarded the Breakthrough Prize in Mathematics "for the new revolutionary invariants of 4-dimensional manifolds and for the study of the relation between stability in algebraic geometry and in global differential geometry, both for bundles and for Fano varieties."
In January 2017, he was awarded the degree "Doctor Honoris Causa" by the Universidad Complutense de Madrid, Spain.
In January 2019, he was awarded the Oswald Veblen Prize in Geometry.
In 2020 he received the Wolf Prize in Mathematics.

Contributions

Donaldson's work is on the application of mathematical analysis to problems in geometry. The problems mainly concern gauge theory, 4-manifolds, complex differential geometry and symplectic geometry. The following theorems have been mentioned:
Donaldson's recent work centers on a problem in complex differential geometry concerning a conjectural relationship between algebro-geometric "stability" conditions for smooth projective varieties and the existence of "extremal" Kähler metrics, typically those with constant scalar curvature. Donaldson obtained results in the toric case of the problem. He then solved the Kähler–Einstein case of the problem in 2012, in collaboration with Chen and Sun. This latest spectacular achievement involved a number of difficult and technical papers. The first of these was the paper of on Gromov-Hausdorff limits. The summary of the existence proof for Kähler–Einstein metrics appears in. Full details of the proofs appear in.

Conjecture on Fano manifolds and Veblen Prize

In 2019, Donaldson was awarded the Oswald Veblen Prize in Geometry, together with Xiuxiong Chen and Song Sun, for proving a long-standing conjecture on Fano manifolds, which states "that a Fano manifold admits a Kähler–Einstein metric if and only if it is K-stable". It had been one of the most actively investigated topics in geometry since its proposal in the 1980s by Shing-Tung Yau after he proved the Calabi conjecture. It was later generalized by Gang Tian and Donaldson. The solution by Chen, Donaldson and Sun was published in the Journal of the American Mathematical Society in 2015 as a three-article series, "Kähler–Einstein metrics on Fano manifolds, I, II and III".

Selected publications

Books
*