Similarity (geometry)
In Euclidean geometry, two objects are similar if they have the same shape, or one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling, possibly with additional translation, rotation and reflection. This means that either object can be rescaled, repositioned, and reflected, so as to coincide precisely with the other object. If two objects are similar, each is congruent to the result of a particular uniform scaling of the other.
For example, all circles are similar to each other, all squares are similar to each other, and all equilateral triangles are similar to each other. On the other hand, ellipses are not all similar to each other, rectangles are not all similar to each other, and isosceles triangles are not all similar to each other.
If two angles of a triangle have measures equal to the measures of two angles of another triangle, then the triangles are similar. Corresponding sides of similar polygons are in proportion, and corresponding angles of similar polygons have the same measure.
This article assumes that a scaling can have a scale factor of 1, so that all congruent shapes are also similar, but some school textbooks specifically exclude congruent triangles from their definition of similar triangles by insisting that the sizes must be different if the triangles are to qualify as similar.
Similar triangles
Two triangles, and, are similar if and only if corresponding angles have the same measure: this implies that they are similar if and only if the lengths of corresponding sides are proportional. It can be shown that two triangles having congruent angles are similar, that is, the corresponding sides can be proved to be proportional. This is known as the AAA similarity theorem. Note that the "AAA" is a mnemonic: each one of the three A's refers to an "angle". Due to this theorem, several authors simplify the definition of similar triangles to only require that the corresponding three angles are congruent.There are several statements each of which is necessary and sufficient for two triangles to be similar:
- The triangles have two congruent angles, which in Euclidean geometry implies that all their angles are congruent. That is:
- All the corresponding sides have lengths in the same ratio:
- Two sides have lengths in the same ratio, and the angles included between these sides have the same measure. For instance:
When two triangles and are similar, one writes
There are several elementary results concerning similar triangles in Euclidean geometry:
- Any two equilateral triangles are similar.
- Two triangles, both similar to a third triangle, are similar to each other.
- Corresponding altitudes of similar triangles have the same ratio as the corresponding sides.
- Two right triangles are similar if the hypotenuse and one other side have lengths in the same ratio.
In the axiomatic treatment of Euclidean geometry given by G.D. Birkhoff the SAS similarity criterion given above was used to replace both Euclid's Parallel Postulate and the SAS axiom which enabled the dramatic shortening of Hilbert's axioms.
Similar triangles provide the basis for many synthetic proofs in Euclidean geometry. Among the elementary results that can be proved this way are: the angle bisector theorem, the geometric mean theorem, Ceva's theorem, Menelaus's theorem and the Pythagorean theorem. Similar triangles also provide the foundations for right triangle trigonometry.
Other similar polygons
The concept of similarity extends to polygons with more than three sides. Given any two similar polygons, corresponding sides taken in the same sequence are proportional and corresponding angles taken in the same sequence are equal in measure. However, proportionality of corresponding sides is not by itself sufficient to prove similarity for polygons beyond triangles. Likewise, equality of all angles in sequence is not sufficient to guarantee similarity. A sufficient condition for similarity of polygons is that corresponding sides and diagonals are proportional.For given n, all regular n-gons are similar.
Similar curves
Several types of curves have the property that all examples of that type are similar to each other. These include:- Circles
- Parabolas
- Hyperbolas of a specific eccentricity
- Ellipses of a specific eccentricity
- Catenaries
- Graphs of the logarithm function for different bases
- Graphs of the exponential function for different bases
- Logarithmic spirals are self-similar
In Euclidean space
where "" is the Euclidean distance from to. The scalar has many names in the literature including; the ratio of similarity, the stretching factor and the similarity coefficient. When = 1 a similarity is called an isometry. Two sets are called similar if one is the image of the other under a similarity.
As a map, a similarity of ratio takes the form
where is an orthogonal matrix and is a translation vector.
Similarities preserve planes, lines, perpendicularity, parallelism, midpoints, inequalities between distances and line segments. Similarities preserve angles but do not necessarily preserve orientation, direct similitudes preserve orientation and opposite similitudes change it.
The similarities of Euclidean space form a group under the operation of composition called the similarities group . The direct similitudes form a normal subgroup of and the Euclidean group of isometries also forms a normal subgroup. The similarities group is itself a subgroup of the affine group, so every similarity is an affine transformation.
One can view the Euclidean plane as the complex plane, that is, as a 2-dimensional space over the reals. The 2D similarity transformations can then be expressed in terms of complex arithmetic and are given by and , where and are complex numbers,. When, these similarities are isometries.
Ratios of sides, of areas, and of volumes
The ratio between the areas of similar figures is equal to the square of the ratio of corresponding lengths of those figures. The altitudes of similar triangles are in the same ratio as corresponding sides. If a triangle has a side of length and an altitude drawn to that side of length then a similar triangle with corresponding side of length will have an altitude drawn to that side of length. The area of the first triangle is,, while the area of the similar triangle will be. Similar figures which can be decomposed into similar triangles will have areas related in the same way. The relationship holds for figures that are not rectifiable as well.The ratio between the volumes of similar figures is equal to the cube of the ratio of corresponding lengths of those figures.
Galileo's square–cube law concerns similar solids. If the ratio of similitude between the solids is, then the ratio of surface areas of the solids will be, while the ratio of volumes will be.
In general metric spaces
In a general metric space, an exact similitude is a function from the metric space into itself that multiplies all distances by the same positive scalar, called 's contraction factor, so that for any two points and we haveWeaker versions of similarity would for instance have be a bi-Lipschitz function and the scalar a limit
This weaker version applies when the metric is an effective resistance on a topologically self-similar set.
A self-similar subset of a metric space is a set for which there exists a finite set of similitudes with contraction factors such that is the unique compact subset of for which
These self-similar sets have a self-similar measure with dimension given by the formula
which is often equal to the set's Hausdorff dimension and packing dimension. If the overlaps between the are "small", we have the following simple formula for the measure:
Topology
In topology, a metric space can be constructed by defining a similarity instead of a distance. The similarity is a function such that its value is greater when two points are closer.The definition of the similarity can vary among authors, depending on which properties are desired. The basic common properties are
- Positive defined:
- :
- Majored by the similarity of one element on itself :
- :
Note that, in the topological sense used here, a similarity is a kind of measure. This usage is not the same as the similarity transformation of the and sections of this article.